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Optimizing nonlinear time-dependent control in complex energy systems
such as direct methanol fuel cells (DMFCs) is a crucial engineering challenge.
Thelong-term power delivery of DMFCs deteriorates as the electrocatalytic
surfaces become fouled. Dynamic voltage adjustment can clean the surface
and recover the activity of catalysts; however, manually identifying optimal

control strategies considering multiple mechanismsis challenging. Here
we demonstrated a nonlinear policy model (Alpha-Fuel-Cell) inspired by
actor-critic reinforcement learning, which learns directly from real-world
current-time trajectories to infer the state of catalysts during operation
and generates asuitable action for the next timestep automatically.
Moreover, the model can provide protocols to achieve the required
power while significantly slowing the degradation of catalysts. Benefiting
from this model, the time-averaged power delivered is153% compared to
constant potential operation for DMFCs over 12 hours. Our framework
may be generalized to other energy device applications requiring
long-time-horizon decision-making in the real world.

Human experience-based learning and decision-making prove increas-
ingly inadequate in meeting the demands of society, especially when
confronted with high-dimensional parametersin highly nonlinear and
long-time-horizon dynamical systems'. A key priority is developing
sustainable energy systemsto address climate change and the energy
crisis® . Direct methanol fuel cells (DMFCs) show great potential due
totheir highenergy density and the ease of storage and transportation
of the fuel form'. The practical performance of DMFCs is affected by
multiple factors such as catalyst design (over-reliance on Pt group
metals) and dynamic operating conditions'2, Whereas commercial
Pt-Ru systems are generally engineered to improve tolerance against
poisoning when operated under ideal conditions, carefully managing
operating parameters is essential to ensure long-term stability. But

maintaining ideal external operating conditions for the optimized
catalyst design (particularly for methanol oxidation (MOR)) is chal-
lenging in reality. The optimal conditions for one catalyst may not be
applicable to others, leading to performance degradation®. One of
the catalysts developed by us (Co-Pt-Ru/NC) can effectively reduce
Pt usage while improving the activity of MOR; however, it still suffers
from the poisoning problem and needs to be refreshed intermittently™.

To solve the problem of gradual deactivation of the catalystin
a dynamic environment, voltage switching (that is, changing the
potential as afunction of time) is used to remove harmful adsorbents
from the surface and extend catalysts’ life"* . Whereas refresh cycles
(operation pauses and air bleed) have been reported to partially miti-
gate DMFC degradation, their arbitrariness emphasized the need for
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optimization of the strategy for the anode™?°. Due to the complexity
of DMFC recovery mechanisms which involve multiple factors, an
electrochemistry-centred investigation offers a more tractable path-
way. Obviously, the policy of changing the voltage U(¢) as afunction of
time tis critical”. However, manual parameter adjustments in experi-
ments face many drawbacks?***. Choosing the optimal policy for U(t)
considering complex time-dependent catalytic chemistry including
memory effects and recovery mechanisms is challenging to achieve
with traditional control theory*.

Reinforcementlearning (RL) is widely used to achieve human-level
control® and complex decision-making tasks such as AlphaGo***” and
holds the potential to offer numerous advantages as a method for
recovering catalyst activity and controlling the operation of DMFCs.
First, the dynamic state of the fuel cell necessitates condition-specific
interventions, with catalyst recovery required only under certain oper-
ating scenarios. RL enables real-time monitoring of the DMFC’s state to
make informed decisions accordingly. Moreover, compared to conven-
tional methods such as PID (Proportional-Integral-Derivative) and MPC
(Model Predictive Control), RL offers greater adaptability by learning
optimal control policies through direct interaction with the system.
Whereas PID and MPCrely on linear approximations or accurate system
identification, RL continuously improves the performance of highly
nonlinear and memory-dependent systems such as games and handles
disturbances without predefined control laws or frequent retuning.

Nevertheless, applying RL for DMFCsin practice presents several
challenges. Most advanced RL models are designed for virtual environ-
ments such as Atari games, where training can occur over millions of
simulations at low cost***'. However, DMFCs are real-world systems
where the simulation-to-real (sim2real) gap necessitates training
directly on experimental data to ensure reliability. Effective DMFC
operation requires accurate state monitoring as different strategies
should be employed according to various cell states. The RL faces
limitations in goal adaptability® caused by the reliance on fixed reward
function structures, which necessitate retraining for varied objec-
tives, impeding adaptability in dynamic environments where goals
may frequently change. Therefore, to maximize and control delivered
power for DMFCs, a new RL-inspired system is necessary, which is
data-efficient and goal-adaptive without relying on virtual simulations.

In this work, we developed a DMFC control system named
Alpha-Fuel-Cell (aFC) inspired by RL, which can achieve goal adjust-
ment by formulating the control strategy based on the states of cells
whilelargely preserving the activity of catalysts. The electrochemical
mass spectrometry (ECMS) was used to explore the hidden mecha-
nism of the activity recovery. Data augmentation was employed to
improve data efficiency. Our method harnesses stochastic gradient
descent algorithms, leveraging the differentiability of neural networks
to dynamically optimize actions towards the desired goals, offering an
efficient pathway to achieving optimal behaviour. We also introduce
a strategy for goal adaptability in RL. As such, the produced power
controlled by aFC is 486% compared to the constant voltage strategy
over 90 hours. And the output power of DMFC is maximized and stable
over more than 250 hours by oFC. The model can seamlessly adapt to
varying objectives without extensive retraining, which is particularly
beneficial in controlling real-world systems.

Manually verifying the voltage-switching strategy

First, voltage switching was manually demonstrated to improve the
activity of Co-Pt-Ru/NC catalyst. Resting potential and resting time
were added to clean the catalyst surface and recover activity during
chronoamperometry (CA) measurements. The resting potentials were
chosenby comparing oxidation and reduction potentials (Supplemen-
tary Fig. 1). After applying MOR potential (0.7 V versus the reversible
hydrogenelectrode (V,;)), the electrode was rested for 30 sand tested
againat 0.7 V. The lower potential (0.1 Vg,e) canimprove the activity
when comparing the current density after resting at high potential (1.2

or 1.7 Vy,p) or integrating the charge over the same period (Supplemen-
taryFig.2). Additionally, high potentials could cause catalyst degrada-
tion due to carbon support corrosion and Ru leaching. Therefore, all
theresting potentials during training and operation are below 0.6 Viy;.

The slow linear sweep voltammetry (LSV) method was employed
to exclude the polarization effect. Instead of changing the potential
t0 0.7 Ve directly after resting at 0.1 Vi, the potential was gradually
increased t0 0.7 Vpye from 0.1 Vi, at 10 mV s after MOR measurements
(0.7 Vgye) and then kept at 0.7 Vg, for the same duration. A similar CA
current density of MOR indicated that the polarization effect can be
ignored in this case (Supplementary Fig. 3). Taking 0.1 and 0.7 Vg
as resting and working potentials, respectively, the constant strat-
egy (0.1 Vg for Iminand 0.7 Vi, for 60 min) and switching strategy
(0.1 Vg for10 sand 0.7 Vi, for 10 min, repeated six times) were com-
pared (Supplementary Fig.4). The switching strategy exhibited higher
current density in the same operation time (Supplementary Fig. 5).

To verify the reproducibility, different catalyst batches were
measured using the same measurement protocol. The difference in
curves is small whether at the beginning of the test or after applying
the switching strategy, suggesting the suitability for training the model
(SupplementaryFig. 6). Although the catalytic activity decayed during
long-term measurements, the switching strategy maintained a higher
average current (Supplementary Fig. 7), proving its effectiveness.
Therefore, it is promising to combine voltage switching and machine
learning to control and maximize the delivered power by optimizing
the parameters.

Workflow of Alpha-Fuel-Cell

The workflow of aFC s illustrated in Fig. 1. Four independent action
variables were identified to control the DMFC: working time, working
potential, resting time and resting potential. These variables shape
atypical current-time trajectory (Fig. 1a), which is used to calculate
the average power and state reflection. The proposed system consists
of an actor module and a critic module, inspired by the actor-critic
algorithminRL (Fig. 1b).

Automated measurements (Supplementary Movie 1) were
employed during the training and control process. The critic module
serves as the action-value function in RL, which evaluates the value of
each actionin a given state (Fig. 1c). To design the highly predictive
critic module, we conducted comparative studies of neural architec-
tures (Supplementary Discussion 1 and Supplementary Figs. 8 and
9). A convolutional neural network (CNN) architecture was selected
to process the current-time trajectory as the state, and a multi-layer
perceptron (MLP) was chosen to handle the action variables. By using
raw trajectories, the need for specialized measurements such as elec-
trochemicalimpedance spectroscopy or complex feature engineering
canbeeliminated, thusimproving computational efficiency and accu-
racy. The CNN’s output is flattened and combined with MLP’s output
to predict the produced power.

Theactor module determines control policies based on the desired
power output (Fig. 1d). We propose leveraging the differentiability of
the trained neural network to eliminate the need for retraining when
the desired output changes. A batch of random actions is input into
the critic module, and back propagation is applied to minimize the
margin between the critic module’s prediction and target outputs.
This allows efficient optimization within a reasonable time of 0.3 s
using only a central processing unit (CPU). Finally, the action with the
smallest marginis selected.

Training and control process of aFC

To train the neural network of the critic module, we randomly sam-
pled datain the action space. Many studies employ simulation-based
surrogate models to learn policy***’. However, developing surrogate
models that perfectly replicate the behaviour of electrochemical cells
is challenging. Considering the sim2real gap, real experimental data
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Fig.1|Schematic of our aFC system. a, The state of the DMFC system is defined
as the trajectories of the potential and the current during a step lasting 5 minutes.
The DMFC system is controlled by four action variables, working time, working
potential, resting time and resting potential. b, aFC iteratively manipulates the
DMFC by choosing the most appropriate actions, as determined by the actor
module, to achieve the desired output for the given state. The critic module
istrained to predict the reward, produced power of the DMFC, for the given

- — A . S S S S
state and the action. ¢, The critic module has two branches: 1D convolutional
neural network for state input (images with 2 x 3,000 pixels) and action-head
network for 4D action input. The numbers in the figure represent the size of the
image or vector. The hidden states are used to predict the output power. Conv.,
convolution layer; Pool., pooling layer; Concat., concatenation.d, The actor
module leverages the differentiability of the critic module to select the next
action, minimizing the margin between the predicted and desired outputs.

were directly used for training. Because experimental dataacquisition
is time-consuming, dataaugmentation®* was proposed to improve data
efficiency, assuming that adjacent trajectories share similar states
givena5 mintimestep size (Supplementary Fig.10 and Supplementary
Discussion 2). The learning curve of the critic module is illustrated in
Fig.2a,showing that the validation loss convergesin 300 epochs. With
data augmentation, the mean absolute error decreased to 0.011 mW
and the Pearson correlation coefficient increased to 0.969 (Fig. 2b),
demonstrating the accuracy of our model and the effectiveness of
data augmentation.

For real experiments, an example of how aFC controls the system
is depicted in Fig. 2c. After step,,,, the state (state,,) of the cell was
obtained from the trajectory curve. During this step, the current was
0.99 mA at10 s (beginning current) and decreased to 0.81 mA at300 s
(ending current). Although the state change is difficult to see with
naked eyes, it can be captured by oFC. The state,, was passed to the
actor module, which generates the action for the next step (action,)

to better achieve the desired output. It recommended performing
low-potential cleaning once. At step,, it showed the current dropping
from 0.97 mA to 0.81 mA. Similarly, the action,,; was suggested by
the oFC after receiving state, as input. The corresponding trajectory
exhibited acurrent from 0.95 mA to 0.82 mA (Supplementary Fig. 11).
This pattern suggests that the catalyst decays over time, but the final
ending current can remainunchanged or even higher thanin the previ-
oustwo steps, indicating that the control of aFC canrecover the active
site of the catalyst and extend its life.

Controlling ability and mechanism of aFC system

The control experiment to demonstrate the capability of «FC was con-
ducted onathree-electrode system. Maximization can be achieved by
setting a target much higher than the possible output at the current
state of the cell. The control process was configured with different tar-
getsin the following sequence: maximum power, 0.2 mW, 0.1 mW, back
to maximum power, —0.1 mW and back to maximum power (Fig. 3a).
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Fig. 2| Result of training and the control process of &FC. a, The learning curve
of the critic module from experimental data for 300 epochs. b, The parity

plot between the experimental power and the critic model prediction. ¢, The
example of controlling process of aFC. The state defined by trajectory is passed

to theactor module and the next action expected to best fit the desired output
isgenerated. The DMFC is then operated iteratively by this action, producing
energy and the current trajectory of the next state.

Anegative-power condition was used to evaluate if «FC could recover
catalyst performance under extreme conditions. The DMFC system
successfully reached the set targets, including the negative one, mean-
ing that the fuel cell could be turned into an electrolyser. Notably, aFC
always allowed the cell to return to its maximum output power when
the target was switched to maximum power. Although initially the
predicted power slightly exceeded the experimental power, it almost
overlapped with maximized experimental power later. These results
demonstrate the excellent goal adaptability of «FC. The specific param-
eters during operation with different targets were further analysed
in Fig. 3b. As the target output changed, the control conditions were
adjusted to match the produced output. For example, when the power
is maximized, the working time is longer and the resting potential is
lower, which allows for more energy production and better recovery
ofthe catalyticactivity. Energy production could be reduced by lower-
ing the working potential, increasing the rest time and reducing the

working time. The correlation coefficient between each variable and
the final output is shown in Supplementary Fig. 12 (Supplementary
Discussion 3).

Agreedy algorithm (GA) was chosen as abaseline to demonstrate
the superiority of our «FC using gradient-based optimization (GBO)
(Supplementary Fig.13). GBO minimizes the margin over 50 iterations
using the criticmodule as asurrogate model. Three baseline GAs were
set-up using trained critic modules: the same number of searches,
the same number of iterations and the same running time. Gradient
tracking takes roughly three times more computations, whichjustifies
this comparison. The comparisonresultsin Fig. 3c show that our GBO
control strategy consistently achieves superior performance.

Toinvestigate the control capability of the aFC and catalyst activity
recovery mechanism, insitu ECMS was employed to monitor changes
inkey products during MOR. Four main products (H,, CO, 0,and CO,)
were examined. Background mass signals in 0.1 M HCIO, electrolyte
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Fig. 3| Controlling ability and analysis of the «FC system. a, Produced power of
the DMFC according to the time. The target power is controlled. The green line
represents the experimental power of DMFC, and the orange line represents the
prediction of the critic module. b, Distribution of the action variables according
to the target with a sample size of 50. Work. T., working time; Rest. T., resting

time; Work. P., working potential; Rest. P., resting potential. ¢, Comparison of
optimizing strategies for the actor module. Predictions of produced power by
GBO and GA are plotted. GBO and GA were compared at the same batch size, same
iteration and same run-time level.

with CVscansareillustratedin Fig. 4a. Weak signals of CO,and CO were
observed as the potential reached higher levels, probably due to the
gradual oxidation of carbon into CO, at elevated potential, with CO
serving as afragment of CO,. The faint O, signalis attributed to a small
amount of oxygen evolution occurring at high potentials. The clear H,
signal canbe attributed to hydrogen evolution during the CVscan atlow
potentials in acidic conditions. Upon adding 0.1 M methanol into the
electrolyte, the CO,and CO signals became stronger, reflecting metha-
nol oxidation (Fig. 4b). Unlike CA measurements, CV scans showed
slower current drop, suggesting that the catalyst surface is refreshed
during the hydrogen evolution. Small pumps of CO signal appeared
during hydrogen production (circled in red dashes), probably due to
the bound CO being replaced by H intermediates and released to the
bulk solution. Switching to CA at a potential of 0.65 Vi, the signals of
CO,and COinitially peaked and then declined, similar to current behav-
iour (Fig.4c), due to theaccumulation of harmful intermediates on the
catalyst surface, which block active sites. Furthermore, no H, signal
was observed as the constant potential did not allow catalyst cleaning
likeinthe CVscan. This also explains why intypical MOR tests, the per-
formancein CV scans is more stable compared to CA measurements.
Figure 4d shows the signal of these four products when aFC con-
trols the reaction. As expected, H, signals reappeared when applying
resting potential to MOR, during which the surface of the catalyst was

covered by Hintermediates (clean the surface to recover the activity).
Moreover, a small peak around 100 s (red circle) could be attributed
totheaccumulated CO being released to the electrolyte. Additionally,
the signal decay ratio of CO,and CO during experiments was calculated
(Supplementary Fig. 14). During CV scans, CO appears as a fragment
of CO,, so theratio of their decline should remain constant. However,
during the resting potential, the changes of CO signal are influenced
not only by the decrease in CO, but also by the release of CO. By com-
paringthe declineratio of CO,to COsignals, itis smaller under resting
potential conditions, indicating CO release from the catalyst surfacein
this state. This further confirms that the aFC effectively cleans harmful
species from the catalyst surface, thereby recoveringits performance.

Maximizing the delivered power by aFC system

To further demonstrate the enhancement of delivered power by oFC,
it was compared with different operational strategies. Initially, ina
three-electrode system (Supplementary Fig. 15), a constant poten-
tial (0.65 Vy,p) was applied to the commercial PtRu/C catalyst for four
hours, serving as abenchmark, because the modelindicated the power
is maximum for DMFCs at this potential for MOR. Additionally, three
different strategies were employed for our Co-Pt-Ru/NC catalyst: a
constant potential strategy, a manual switching strategy and oFC
to maximize mean power (Supplementary Fig. 16). To avoid unfair
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comparison, the parameters for the constant and switching strategies
were determined by the model (Fig. 3b).

Results over four hours showed that the power output
increased in the following order: PtRu/C_constant, Co-Pt-Ru/NC_
constant, Co-Pt-Ru/NC_switch and Co-Pt-Ru/NC_aFC (Fig. 5a). The
oFC-controlled strategy achieved a power of 0.284 + 0.013 mW, which
is 2.15 times and 4.64 times more than Co-Pt-Ru/NC_constant and
PtRu/C_constant, respectively. On the basis of this, the operation time

was extended to 12 hours (Supplementary Fig. 17). In Fig. 5b, under
the constant potential strategy, although Co-Pt-Ru/NC showed bet-
ter catalytic activity than PtRu/C, power decreased rapidly due to CO
orother species poisoninginboth cases. Switching strategy reduced
catalyst deactivation, showing better sustained performance than the
constant strategy. Moreimportantly, aFC achieved a30.4% increasein
power compared to the switching strategy. Further comparison with
constant strategies for our catalyst and commercial catalyst showed
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by constant and switching potential, respectively. sFC means the system is
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b, The comparison of the produced power according to thetimein12 hin
three-electrode system. The PtRu-Const means PtRu/C catalyst controlled by
constant potential, while all other strategies were using Co-Pt-Ru/NC catalyst.

¢, The produced power of different strategies for 12 hours. d, The produced
power of DMFC using PtRu/C as the catalyst according to the time controlled

by constant potential and aFC. e, The total produced power for 4 hours. f, The
produced power of DMFC using Co-Pt-Ru/NC as catalyst according to the time
and controlled by constant potential and aFC. g, The total produced power for
12 hours. Test conditions for DMFC:1x 1 cm?MEA, methanol flow rate: 5 ml min™,
0, flow rate: 40 ml min™, 1M methanol, Nafion117 as membrane, Pt/C as the ORR
catalyst, the cell is operated at 60 °C. Details can be found in Methods.

oFC’s ability to increase power by 185.2% and 486.1%, respectively
(Fig.5c).

To explore strategy adaptability, principal component analysis
was employed to visualize changes in the optimal driving strategy as
cellstates changed (Supplementary Fig.18 and Supplementary Discus-
sion 4). The ageing trajectories obtained from the constant strategy
deteriorate rapidly, while staying longer in a fresher cell state of the
switching strategy. This supports that dynamic adjustment using aFC
can effectively increase energy production while restoring activity.

Additional comparative experiments were conducted to validate
the effectiveness of aFC by fixing the resting potential at 0.04 Vi, and
0.3 Vg, while allowing oFC to determine the remaining variables (Sup-
plementaryFig.19). Over the 12-hour test, the output power under both
fixed resting potentials was higher than that of the constant potential
strategy but still underperformed compared to full aFC control. This
is because in a complex and dynamically changing environment, the
resting potential should be determined based on the real-time state
ofthe catalyst rather than being fixed at a specific value, which makes
it difficult to adapt to different catalyst states. For example, under a
fixed resting potential of 0.04 Vy,;, the catalyst may already beina
favourable state, making resting or cleaning unnecessary. Enforcing
suchanaction could reduce output power (because the currentis not
high during resting) and potentially disrupt a stable catalyst state.
Conversely, at afixed resting potential of 0.3 Vi, surface cleaning may
be insufficient when needed, leading to the accumulation of harmful
species and subsequent activity decline. Therefore, allowing aFC to
autonomously assess and control the catalyst’s state is essential for
maintaining optimal performance.

Furthermore, as fuel cells are typically required to have along life-
time, long-term comparative experiments (aFC vs constant potential)

were conducted. After 90 hours of testing, the average power output
under aFC control was 4.86 times that of the constant potential (Sup-
plementary Fig. 20). Additionally, CO stripping experiments under
the two control conditions showed that the catalyst under oFC control
exhibited anearlier onset potential and higher current (Supplementary
Fig.21), confirming that over long-term testing, FC more effectively
preserves catalyst activity, thereby extendingits lifespan and maximiz-
ing power output.

Other control methods, such as PID and MPC, were also employed
to demonstrate the superiority of aFC. PID, as a conventional linear
control method, struggled with complex systems such as fuel cells
due toits reliance on precise parameter tuning. As a result, PID pro-
duced only about 50% of the power achieved by aFC (Supplementary
Fig. 22). MPC method relies on a difficult-to-achieve prerequisite:
highly accurate simulation. In the context of fuel cells, efforts are made
tosimulate their electrochemical behaviour over time, suchas through
the Butler-Volmer equation. However, the simulation results often
fail to align closely with experimental observations (Supplementary
Fig.23) due to the difficulty of accurately modelling variables such as
catalyst degradation (which varies between catalysts), changesin the
electrolyte, membrane effects and variations on the oxygen reduction
(ORR) side and so on. Consequently, when the simulationisinaccurate,
the control results produced by MPC can deviate substantially from
the expected outcomes.

The universality of aFC was further examined by applying it to
a DMFC without retraining (Supplementary Fig. 24), although the
modelwas trained by athree-electrode system. Animportant premise
was the model’s conclusion that the potential for achieving maximum
power is 0.65 Vg, based on our assumption that the potential for
the ORRis at 0.9 Vi, resulting in a cell operating voltage of 0.25 V.
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Moreover, during LSV testing of the DMFC, the peak power density was
also observed around 0.25 V (Supplementary Fig. 25), demonstrating
the model’s universality and its accuracy. As operation conditions in
three-electrode systems and DMFCs are quite different, such as counter
reaction, pH of electrolyte, temperature and so on, aFC successfully
adapted across platforms.

For the commercial PtRu/C catalyst, traditional constant voltage
testing resulted in a rapid decay in device current within four hours,
leading to asharp decrease in output power. However, when the same
membrane electrode assembly (MEA) after being measured by con-
stant strategy was further controlled by aFC, output power could be
maximized and maintained for over 12 hours (Fig. 5d). Within the initial
four-hour run time, aFC could increase output by 34.91% (Fig. 5e).
When Co-Pt-Ru/NC was employed as a lower-precious-metal alterna-
tive, it demonstrated higher stability in constant voltage testing, yet
still exhibited noticeable output power decay, highlighting the utility
of aFC (Fig. 5f). When oFC controlled the DMFC with Co-Pt-Ru/NC as
the anode catalyst, the output power could be sustained at maximum
levels (around 20 mW) with minimal decay. Over a 12-hour period,
oFCfurtherincreased output power by 53.79%, providing compelling
evidence of its effective control over DMFC (Fig. 5g).

Typically, the performance of a DMFCis influenced by various fac-
tors, not only the degradation and deactivation of the internal catalyst
but also external operating conditions such as temperature, methanol
concentrationand flow rate. RL, particularly the aFC-controlled system,
proves advantageous by adapting to environmental changes and main-
taining optimal power output. To validate this capability, experiments
were conducted using PtRu/C as the catalyst, where external conditions
were varied while the system was controlled by aFC. In the previous
tests, the methanol flow rate was setat 5 ml min"and the O, flow rate was
40 mlmin™. First, keepingall other conditions unchanged, the methanol
flowrate wasincreased to 20 ml min™, the LSV results indicated the peak
power density was around12.8 mW cm (Supplementary Fig. 26a). When
oFC (without any modification) was used for long-term control, the
power output remained stable at this level (Supplementary Fig.26b), in
contrast to the rapid decline observed with the constant strategy used
before (Fig. 5b). Similarly, when the O, flow rate was increased from
40 ml min™to100 ml min~while maintainingall other parameters under
oFC control, the peak power density also decreased (13.9 mW cm™).
However, oFCstillensured stable operation at the corresponding maxi-
mum power output over an extended period (Supplementary Fig. 27).

These results demonstrate that while external factors influence
DMEFC performance, they do not affect the robustness of aFC. The effec-
tiveness of aFC is independent of changes in external conditions: when
external conditions are optimal, «FC maintains the maximum power
output stably under those conditions; when conditions are suboptimal,
oFC canstillachieve the maximum possible power output for that specific
scenario. Notably, whether in a three-electrode system, an actual DMFC
device, using the self-developed Co-Pt-Ru/NC catalyst, or the commercial
PtRu/C catalyst and under various operating conditions, aFC consistently
exhibitsstable performance, highlightingits strong adaptability and broad
applicability. Although we did not extensively discuss external factorsin
this study, combining our approach with other machine-learning-guided
designs of DMFC that account for these external factors could lead to the
development of more efficient, stable and controllable DMFCs capable of
maximizing performance®. Finally, long-term measurements controlled
by aFC were conducted (Supplementary Fig. 28). The output power is
maximized and stable over more than 250 hours. The power dropped
afteraround 240 hofoperation due to the depletion of oxygen. However,
the power could be recovered after restoring the oxygen supply, which
further demonstrates the robustness of &FC.

Conclusions
In summary, we successfully developed Alpha-Fuel-Cell controller
inspired by reinforcement learning to maximize the time-averaged

power delivered by DMFCs. Our work s a proof-of-concept study dem-
onstrating how to combine energy storage/conversion devices with
edgeartificial intelligence to tune anindividual device’s performance,
highlighting the neural network’s power in experimental science. In
additiontoindustrial use, we note that research devices are frequently
modified with unknown characteristics, so using a self-learning control-
ler and non-constant operation conditions can facilitate more rapid
identification of any research device’s true optimized performance.
Thisidea canbe generalized to multiple fields, such as battery forma-
tion protocol and charging policy, electrodeposition, temperature/
fluid flow controls in reactors and so on.

Methods

Synthesis of Co-Pt-Ru/NC

Allchemicals were used as received without further purification. Milli-Q
deionized water was usedin all experiments. First, ZIF-67 was prepared
by the precipitation reaction between Co(NO;),-6H,0 (1.23 g) and
2-methylimidazole (1.46 g) in 50 ml methanol at ambient conditions.
After 20 hours of reaction, ZIF-67 was obtained by centrifugation and
then washed with methanol three times, followed by drying in the oven
overnight. To prepare Co NPs/NC, an aluminaboat crucible loaded with
ZIF-67 was placed into a tube furnace, heated to 1,000 °C at the rate
of 5°C min™ and then kept at that temperature for 2 h under N, flow.
After that,100 mg Co NPs/NCwasdispersedin 50 mlH,0 and sonicated
for 30 min. Five ml H,PtCl, hydrate (4 mg ml™) and 5 mI RuCl, hydrate
(4 mg ml™) were added into the above suspension and followed by stir-
ringfor2 h. The suspension was centrifuged with water three times and
dried overnight to obtain Co+Pt+Ru/NC. The final product Co-Pt-Ru/
NCwas prepared by pyrolysis of Co+Pt+Ru/NCat 900 °C witharate of
5°Cmin”for2hunder N, flow.

Electrochemical measurements

Electrodes were prepared by drop-casting an ink containing cata-
lyst powder with Nafion on a glassy carbon (GC) disk electrode (Pine
Research, 5 mmdiameter). Typically, 5 mg of catalyst was dispersed in
amixture with 980 pl of ethanol and 20 pl of Nafion (5 wt%) via ultra-
sonication for 60 min to formthe catalyst ink. Ten pl of catalyst ink was
dropped on the GC with a nominal loading of 250 Pg_¢ys: €M e, and
46 PEnarion CM g, Electrochemical measurements were carried outin
a three-electrode set-up in a glass electrochemical cell with Ag/AgCI
reference electrode and carbon rod counter electrode. The Ag/AgCl
reference electrode was calibrated inthe same electrolyte by measuring
the hydrogen oxidation/evolution using a platinum working electrode
and defining the point of zero currentas O Vvs RHE. The potential was
controlled using a Biologic VSP-300 potentiostat. Cyclic voltammetry
(CV) could be recorded in the solution of Ar-saturated 1M CH;0H in
0.1 M HCIO, with a potential range between ~0.05-1.2 V vs. RHE at a
scanrate of 50 mV/s. The background current was collected from the
CV of catalysts in Ar-saturated 0.1 M HCIO, before CH,OH addition.
The chronoamperometry (CA) measurements were conducted for data
collection, model training and verification. Two pumps were used to
refresh the electrolyte during measurements.

DMFCs measurements

The as-synthesized Co-Pt-Ru/NC and commercial Pt/C were used as
catalysts at the anode and cathode to fabricate the membrane elec-
trode assembly (MEA), respectively. First, 40 mg catalyst powder was
dispersedin2 mlisopropanol with200 plNafion (5 wt%) and sonicated
for1h. The catalyst was drop-cast on carbon cloth to reach a precious
metal loading of ~1 mg cm™ for Co-Pt-Ru/NC and a precious metal
loading of 4 mg,,cm™ for Pt/C as anode and cathode, respectively.
The MEAs were fabricated by sandwiching the Nafion117 membrane
between the anode and cathode and followed by hot pressing at120 °C
under a pressure of 0.2 MPafor 3 min. The assembled DMFC was tested
at 60 °C by feeding 1 M CH;OH at a flow rate of 5 ml min™ and purging
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humidified oxygen at a flow rate of 40 ml min™. The commercial PtRu/C
was used for comparison with a precious metal loading of 2 mgp s, cm™
Sigracet 22 BB from Fuel Cell Store was used as the gas diffusion layer.
Theactive area of MEA is 1 x 1 cm? When changing the external condi-
tions, the methanol flow rate was changed to 20 ml min~ or O, flow rate
was changed to 100 ml min™.

Dataacquisition

To collect training data more efficiently and accurately, we employed
athree-electrode system to do CA measurements for MOR. To mimic
or calculate ‘pseudo power’ for the fuel cell, we assumed the potential
for the other halfreaction (oxygenreduction reaction) is 0.9 Vgye. The
power can be calculated by P=(0.9 — Ey,;e) X I, where Eg,: represents
the potential for CA measurements of MOR and /is the current. Dur-
ing switching CA measurements, there are two steps including the
working time for working potential and the resting time for resting
potential. To minimize the effect of methanol evaporation during
long-time measurements, two pumps were used to refresh the elec-
trolyte; one is used to feed the new electrolyte and the other is used
to pump the tested electrolyte to the waste liquid tank, thus main-
taining the methanol concentration in the electrolyte at a constant
value (1M CH,0H).

Data collection is conducted using our proposed automated
controller system. This automated system receives 4D action vari-
ables as input every 5 minutes and performs the given control for
5 minutes. This means that the control conditions change every 5 min-
utes and we call this ‘step’. We assume that our controller follows a
Markov decision process (MDP) where an action only depends on
its previous state. The action space at ith step is set as a 4D vector
consisting of resting potential, resting time, working potential and
working time. The state at ith step is defined as the concatenation of
the trajectory of (i — 1)th action and the current trajectory as the cell
response to that. The reward (power) at ith step R;is calculated as the
produced power during ith step, whichis the area under the curve of the
cell over time.

1 T
Ri=1 [ noviode
T 0

where Tisthe timeinterval atith timestep, /;is the current trajectory at
ithtimestep, V;is the trajectory of potential controlled at ith timestep.

Like typical RL, our model for controlling the DMFC system is
trained from accumulated data according to the cell operation. We
acquired 1,000 random action data points as warm-up.

Data augmentation

In developing RL framework for the control of direct methanol fuel
cells,adataaugmentation strategy was employed to enhance data effi-
ciency. Central to our approach was the assumption that adjacent states
inthe operational space share similar cell conditions. Our model was
trained using an augmented dataset, wherein each known state’s data
was used to generate additional, synthetic data points forits adjacent
states. This data-efficientapproachimproved the model’s performance
and reduced the need for extensive data collection, accelerating the
training process and increasing the feasibility ofimplementing RL for
fuel cell control in practical settings.

Alpha-Fuel-Cell algorithm

Our oFC algorithmis inspired by the actor-critic method™, whichis a
temporal difference variant of policy gradient, having two neural net-
works: anactor and a critic. While the actor is trained to optimize the
goalusing a policy gradient approach, the criticis trained to calculate
theaction-value functionso that the actor returns better actions. Our
criticmodule similarly predicts rewards from state and action but sets
the discount factor to O so that it only considers immediate reward.

Instead of directly predicting action from the state using a neural
network, our actor calculates the desired action, which is optimized
based onthegradient to achieve the target reward by utilizing the dif-
ferentiability of the neural network.

Critic module

In our model for direct methanol fuel cell control, a Convolutional
Neural Network (CNN) was employed to process the state inputs. The
primary input to the CNN comprised the cell’s current response to volt-
age manipulation over a period of five minutes. This time-series data,
capturingtheintricate dynamics of the fuel cell, provided acomprehen-
sive view of'its current state. Following the CNN processing, the model
focused ona4D actionspace, defined by resting time, resting potential,
working time and working potential. These action parameters were fed
into anaction-head network, where they underwentembedding to cap-
ture the nuanced relationships and operational constraintsinherentin
the fuel cell’s functioning. The embedded action representations were
then concatenated with the CNN'’s output, forming arich, integrated
feature set. This combined feature set was further processed using a
Multi-Layer Perceptron (MLP). The MLP, leveraging its deep learning
capability, was tasked with predicting the cell’s power output for the
given operational interval.

Thestateinputtothe CNNatacertainstepi,denotedasS,, iscom-
posed ofthe cell’s current (/) and voltage (V) responses, collected over
astep of five minutes. This is represented as amultivariate time-series
data:

Si={th, V), (I, V2), ... . (I, V)

where (/,,V,) represents the current and voltage at time ¢, and T'is the
total number of time steps. The CNN processes this input to extract
relevant features:

Z; state =f6 S

where f,is a CNN parameterized by a parameter set 6 and z; s, is the
hidden state as CNN output at the ith step. The action space is a 4D
vector Ai = (aresntime’arest‘pot’ aworkAtime’aworkpot) 4 representing reSting
time, resting potential, working time and working potential, respec-
tively. This action vector at step i is embedded using an action-head
network to capture the complex dynamics of the fuel cell:

Z; action = g(p (Ai)

where g, isanaction-head network parameterized by a parameter set
@ and z; ,ion is the hidden state as the output of the action-head net-
work. The embedded action representation z; ,..;,,iS concatenated with
the CNN output z; . and fed into an MLP for predicting the power
output:

ﬁi = hf([zi,state’ zi,action])

where hg is an MLP parameterized by a parameter set and R; is the
reward prediction of the model.

Thismodelistrainedto predict the cell’s power output during the
specifiedinterval. The training process involves optimizing the param-
eters 6,¢,fof the CNN, action-head network and MLP, respectively, to
maximize the operational efficiency of the fuel cell.

1 s 2
£(0.0.8=1|7 % (R -R)
where nisanumber of data points.
The optimization is typically performed using a gradient-based
method, aiming to reduce the prediction error of the power output,

Nature Energy


http://www.nature.com/natureenergy

Article

https://doi.org/10.1038/s41560-025-01804-x

which directly correlates with improving the fuel cell’s performance
under various operating conditions.

6,9, =argmin £ (6,9,¢)
0.0.8

This targeted optimization helps in fine tuning the control strate-
gies for the fuel cell, enhancing bothiits efficiency and longevity.

Action module operation

Our control system controls the DMFC system by changing action
variables every 5 minutes. By utilizing the differentiability of the
neural network, we adopted gradient-based optimization for select-
ing the nextaction variable. Theinitial action variable A..q4is defined
by a uniform distribution function fromits minimum A, and max-
imumA,,,.

Aseed ~U (Amin’ Amax)

Ai = ar;gmin (hf ([fg (Si) 9g<p (Aseed)]) - Rtarget)2

seed

Siv1 ~ Pz, S, A)

where Ry, g is the desired power to be controlled and A; is the action
variable for the step. Next state (i + 1)th step is sampled according to
the probability distribution P defined by DMFC cell reaction kinetics.
Ourautomated control framework iteratively performs this optimiza-
tion to continuously control the DMFC system.

Automated control and measurement

To automatically control and measure the DMFC systems, EC-Lab
software is combined with PyAutoGUI?® using Python programming
language. Once the programme starts, aFC conducts the first action
defined as applying a constant 0.65 V for 5 min. The produced power
during 5 min s calculated from the raw trajectories of potential and
current. Raw trajectories and produced power are saved as aJSON
file. The actor module receives the state as input and selects the most
appropriate action for the desired output, considering the state of
the cell at that time. Then, the critic module receives both action and
state as input and predicts the DMFC output for the next 5 minutes.
The actions selected by the actor module are used to control the con-
nected DMFC, which acts as an environment that responds to actions
and returns rewards, through EC-Lab. The trajectory over 5 minutes
isrecorded to serve as the next state, and the power produced is used
aslabels to train the output of the critic module. This processiterates
every 5 minutes until the experiment ends.

Real applications of aFC

After thetraining, several experiments were conducted to demonstrate
the ability of aFC. First, the controlling experiment was carried out in
athree-electrode system by setting different targets. As the highest
reward of that conditionisaround 0.3 mW, therefore, the target was set
as 0.5 mW to maximize power. The controlling process was in the follow-
ing order: maximum power, 0.2 mW, 0.1 mW, back to maximum power,
—-0.1 mW and back to maximum power. To compare the effectiveness
of aFC, different strategies were employedin three-electrode systems,
including PtRu/C with constant potential, Co-Pt-Ru/NC with constant
potential, switching strategy and aFC. The final demonstration was on
DMFCs by using PtRu/C and Co-Pt-Ru/NC with «FC.

CO stripping experiments

The CO stripping activities of Co-Pt-Ru/NC after long-term measure-
ments controlled by constant potential and aFC were compared.
Typically, after the long-term test, the catalysts were subjected to CO

adsorption at 0.05V vs RHE for 30 minutes and the solution was then
purged with Ar to remove unbound CO. Stripping data were collected
by CVatascanrate of 10 mV s™. The current was corrected with back-
ground current.

Insitu electrochemical mass spectrometer

Allelectrochemical measurements with mass spectrawere carried out
withacommercially available microchip-based electrochemistry mass
spectrometry (ECMS) set-up (Spectrolnlets ApS, Denmark). Five-mm
diameter glassy carbonwas used as the working electrode. The counter
(carbonrod) and reference (Ag/AgCl) electrodes were inserted in a
glass tube with a ceramic frit on the tip, respectively. The 0.1 M HCIO,
was used as an electrolyte first to collect the background mass signal.
The mass spectra of different species (H,, H,0, O,, CO,) were recorded
while the CV of MOR was measured from ~0.05 Vg to 1.2 V. The
mass spectra of these species during CA test and controlled by aFC
were alsorecorded.

Proportional-Integral-Derivative control of DMFCs

PID control (Proportional-Integral-Derivative Control) is a control
technique that generates a control signal so that the output of the
system reaches the desired value. The PID control signal input u(t) is
defined as follows:

t
u(t) =Kye( +K,~f e(1) dr+Kdde(t)
0 dt

wheree(¢) isthe error between the output of the systemand the desired
valueattimet,K,,is the proportional gain, K;is the integral gainand K,
is the derivative gain.

Inour DMFC system, each gainisa4D vector.Ingeneral, thereare
various tuning methods such as the Ziegler-Nichols method, which
determines the gain from the vibration of the system to obtain each
gain. In our study, the gains were determined empirically through
simulation.

Data availability

Thedatathatsupportthe findings of this study are available within the
Article and its Supplementary Information. Source data are provided
with this paper.

Code availability
The oFC code associated with this manuscript is available via GitHub
at https://github.com/parkyjmit/alphaFC.
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