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The oxygen evolution reaction (OER) is central to making 
carbon-free and carbon-neutral energy carriers such as hydro-
gen, hydrocarbons and ammonia using low-cost electrons 

from renewable energy1, but the slow kinetics of the OER limit the 
power and energy efficiency of such devices2. Late transition metal 
oxides are known to exhibit high catalytic activity for the OER2–4, 
which can be correlated with the binding strength of oxygenated 
intermediates5 or intrinsic electronic structure features such as the 
eg occupancy of transition metal cations6 and oxygen p-band centre 
relative to the Fermi level7. Unfortunately, the most-active oxides 
based on Ni (ref. 3) or Co (ref. 4) have estimated turnover frequen-
cies (TOFs) per metal site that are at least one order of magnitude 
lower than those of oxygen-evolving complexes in biological sys-
tems8,9. For example, the oxygen-evolving complex in photosystem 
II for water oxidation relies on an intricate manganese–calcium–oxo 
cluster CaMn4O5 (ref. 10) that achieves unparalleled OER activity 
due to the unique electronic structure characteristics of Mn centres 
regulated by Ca2+ cations and carboxylate ligands11. Generally, metal 
substitution in metal–oxo clusters12,13 has been shown to offer much 
greater tunability of electronic structure characteristics than that in 
metal oxides14. For instance, Ca2+ substitution of Mn4+ in synthetic 
CaMn3O4 clusters tunes the Mn3+/4+ redox potential by ~1 V (refs. 12,13),  
whereas negligible changes of ~0.02 V are typically observed after 
similar metal substitution in oxides3,14. Thus, immense opportu-
nities exist to design hybrid organic–inorganic materials such as 
metal–organic frameworks (MOFs)15,16 that combine the great tun-
ability of enzymatic11 or homogeneous systems17 with the stability of 

oxides to break the current inherent limitations of traditional cata-
lysts, including the large footprint18 and poor stability19.

MOFs are porous materials constructed by connecting inorganic 
building units (for example, metal clusters) with organic ligands 
using supramolecular chemistry20, which provides a platform to 
design unique active-site environments for tuning electrocata-
lytic activity and selectivity21. Pioneer works have shown that Fe2S2  
(ref. 22), porphyrinic FeN4 (ref. 23) and CoN4 (ref. 24) centres embed-
ded within the pores of MOFs can catalyse the electrochemical 
hydrogen evolution22, oxygen reduction23 and CO2 reduction reac-
tions24, respectively. Recently, Tilley and coworkers have demon-
strated OER activity using MOFs with Co4O4 clusters25 analogous 
to those found in the oxygen-evolving complexes of enzymes. 
Moreover, the OER activity of MOFs based on Ni–OH and Co–OH 
layers featuring edge-sharing Ni- and Co-octahedral chains cross-
linked through organic linkers26 has been reported to rival that of 
the state-of-the-art catalysts27. Unfortunately, more recent studies 
have revealed that in alkaline electrolytes and at OER potentials, 
similar MOFs28–30 decompose into Ni and Co hydroxides, which 
are well known to catalyse the OER2,3. Therefore, developing stable 
MOF catalysts in aqueous electrolytes and under oxidizing OER 
conditions is critical to fully leverage their unique capability to host 
highly tunable and active metal sites with ligand fields akin to those 
in enzymatic systems.

Here we developed a stable, active and highly tunable catalytic 
platform bridging transition metal oxides and MOFs by reacting 
layered hydroxides with aromatic carboxylate linkers to generate  
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MHOFs. We further established fundamental descriptors for 
the chemical stability, redox potential and OER activity of these 
MHOFs. Although traditional MOFs are typically connected 
by labile metal–ligand coordination bonds, these MHOFs are 
uniquely reinforced by strong π–π stacking interactions between 
linkers, resulting in stable MHOF lattices in alkaline OER condi-
tions. Moreover, the number of electrochemically accessible active 
sites can be increased drastically by synthesizing MHOFs as ultra-
thin nanosheets. Further optimization of Ni MHOF nanosheets via 
metal substitution resulted in a catalyst featuring a mass activity of 
80 amperes per gram of the catalyst (A g−1

cat.) and a TOF of 0.30 O2 s−1 
per electrochemically accessible metal site at 0.3 V overpotential 
in 0.1 M KOH for 20 h, exceeding the performance of commercial 
IrO2 (Supplementary Table 1). The enhanced OER activity was 
attributed to the increased Ni redox potential and the optimized 
binding energy of oxygenated intermediates enabled by their  
unprecedented tunability.

Design and synthesis of stable MHOFs in alkaline solutions
Crystalline MHOFs were synthesized through solvothermal reac-
tions between layered metal hydroxide precursors and aromatic 
organic linkers (Fig. 1a–c). A series of isostructural MHOFs were 
obtained from different metal (M2+ = Mn2+, Co2+, Ni2+, Cu2+ and 
Zn2+) and linker (L1, L2, L3, L4 and L4F) combinations, demon-
strating the vast structural and compositional diversity attained 
using this method. While the powder X-ray diffraction patterns of 
M2(OH)2(L4) were nearly identical (Supplementary Fig. 1), those 
with organic linkers of increasing length were shown to have the first 
diffraction peak shifted to lower angles (Fig. 1d), indicating larger 
interlayer spacing, which was further validated via Pawley refine-
ment (Supplementary Fig. 2 and Supplementary Table 2). Moreover, 
we used continuous rotation electron diffraction to resolve the struc-
ture of Ni2(OH)2(L4) from the reconstructed three-dimensional (3D) 
reciprocal lattice (Fig. 1e, Supplementary Fig. 3 and Supplementary 
Tables 3 and 4). High-resolution transmission electron microscopy 
(HR-TEM) images of Ni2(OH)2(L4) (Fig. 1f and Supplementary  
Fig. 4) taken along the a axis match the atomic arrangements 
projected along the same direction (Fig. 1f inset), having lattice 
spacings for the (010) and (001) planes in agreement with those 
determined from powder X-ray diffraction (Supplementary Table 
2). While it is known that hydroxides can be intercalated with 
anionic ligands (such as dicarboxylate31 and disulfate32) to form 
lamellar compounds33, the crystal structures of MHOFs are dis-
tinct from those of layered hydroxides (Supplementary Fig. 5 and 
Supplementary Note 1). In addition, in contrast to traditional 
MOFs with their high porosity and surface areas20, MHOFs have 
relatively low Brunauer–Emmett–Teller surface areas, as indi-
cated by N2 adsorption measurements (Supplementary Fig. 6 and  
Supplementary Table 5).

Increasing the π–π interactions between organic linkers was 
shown to enhance the stability of MHOFs in alkaline solutions (Fig. 1g  
and Supplementary Figs. 7 and 8), a result that stands apart from 
conventional MOFs composed of M2+ metals linked with carboxyl-
ates that readily decompose in water34. While Ni2(OH)2(L1) showed 
the lowest stability, leached out a majority of the organic linkers, lost 
crystallinity and generated amorphous Ni(OH)2 after 6 h in KOH, 
Ni2(OH)2(L4) exhibited the highest stability, where no substantial 
changes in the composition and crystallinity were detected after 
24 h. Both the leaching rate of linkers and the steady-state molar 
concentration of dissolved linkers on a logarithmic scale were 
found to decrease linearly with increasing π–π stacking energy in 
MHOFs (Fig. 1h and Supplementary Figs. 9 and 10), which could 
be attributed to the increased kinetic barrier and/or decreased ther-
modynamic driving force for the leaching of these linkers. Notably, 
the stability of Ni2(OH)2(L4) and Ni2(OH)2(L4F) in alkaline solu-
tions is among the highest reported for MOFs, comparable to that 

of MOFs based on Ni–azolate, which are known for their record 
stability34. Thus, Ni2(OH)2(L4) and Ni2(OH)2(L4F) were selected for  
further studies.

Synthesis and electrochemical measurement of  
MHOF nanosheets
Synthesizing Ni MHOFs in a nanosheet architecture can increase 
the number of electrochemically active metal sites available for 
(electro)catalysis. By reacting NiCl2·6H2O (instead of Ni(OH)2) 
with the respective linker, we were able to grow MHOFs in the bc 
plane (that is, against the Ni–OH layer direction) as nanosheets  
(Fig. 2a). Powder X-ray diffraction patterns of Ni2(OH)2(L4) 
nanosheets showed the absence of (h00) reflections, while the (0k0) 
and (00l) diffraction peaks remained sharp, indicating reduced 
dimensions along the a axis and unaltered lattice structure within 
the bc plane (Supplementary Fig. 11). Scanning electron micros-
copy (Fig. 2b and Supplementary Fig. 12) and TEM (Fig. 2c and 
Supplementary Fig. 13) showed Ni2(OH)2(L4) nanosheets with 
a regular rectangular shape, and the (100) surface termination 
of Ni2(OH)2(L4) nanosheets was further verified by HR-TEM  
(Fig. 2c) and electron diffraction (Supplementary Fig. 14). Lattice 
fringe spacings of 0.61 nm and 1.60 nm shown by HR-TEM are 
consistent with the interplanar spacings along the b and c axes of 
the structure of Ni2(OH)2(L4) computed from powder X-ray dif-
fraction refinement (b = 0.62 nm and c = 1.57 nm, respectively; 
Supplementary Table 2). A thickness of ∼4.2 nm was found 
for Ni2(OH)2(L4) nanosheets using atomic force microscopy 
(Supplementary Fig. 15), corresponding to approximately 12 unit 
cells. Notably, Ni2(OH)2(L4) nanosheets were found to have a 
15 times larger electrochemically active surface area than bulk 
Ni2(OH)2(L4) per unit weight (Supplementary Fig. 16), quantified 
by integrating the charge of the redox peaks at 1.38 V versus the 
reversible hydrogen electrode scale (VRHE) measured using cyclic 
voltammetry (CV) in 0.1 M KOH. This result is consistent with 
a higher weight loss below 300 °C for Ni2(OH)2(L4) nanosheets 
compared with bulk samples in thermogravimetric analysis, pre-
sumably attributable to more water removal from surface Ni sites 
(Supplementary Fig. 17). Moreover, a similar synthetic strategy 
was used to fabricate Ni2(OH)2(L1), Ni2(OH)2(L2), Ni2(OH)2(L3) 
and Ni2(OH)2(L4F) nanosheets with characterization results 
(Fig. 2d and Supplementary Figs. 18 and 19) comparable to those 
of Ni2(OH)2(L4), highlighting the universality of this synthetic 
approach for MHOF nanosheets.

Tuning the nickel redox of MHOFs by metal substitution
We substituted the Ni2+ cations in Ni2(OH)2(L4) nanosheets with 
comparable percentages of electron-withdrawing heterometal sub-
stituents (La3+, Zn2+, Y3+, Al3+, Sc3+ and Fe3+, between ~12.5 and 
~17.9 at.%; Supplementary Table 6). Elemental mapping based on 
energy-dispersive X-ray analysis, conducted by scanning electron 
microscopy and TEM, showed homogeneous distribution of sub-
stituents in these nanosheets (Supplementary Figs. 20 and 21). No 
pronounced changes were observed in the powder X-ray diffrac-
tion patterns and unit cell dimensions (quantified via Pawley refine-
ment) of M/Ni2(OH)2(L4) with different heterometal substituents 
(Supplementary Figs. 22–24 and Supplementary Table 7). Moreover, 
X-ray photoelectron spectroscopy (XPS; Supplementary Fig. 25) and 
Ni K-edge X-ray absorption near-edge structure (Supplementary 
Fig. 26a,b) analyses of M/Ni2(OH)2(L4) showed negligible changes 
in the surface and bulk oxidation state of Ni2+ introduced by metal 
substitution, respectively. The negligible shift of Ni 2p XPS peaks 
for M/Ni2(OH)2(L4), falling within the experimental uncertainty 
of laboratory XPS (~0.1 eV)35, can be attributed to the low sub-
stitution levels in M/Ni2(OH)2(L4) (Supplementary Note 2). The 
X-ray absorption near-edge structure of M/Ni2(OH)2(L4) indicated 
no notable changes in the Ni K-edge (Supplementary Fig. 26a,b), 
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supporting the idea that the first-shell coordination and oxidation 
state of Ni were mostly unchanged after metal substitution. The Fe 
K-edge X-ray absorption near-edge structure of Fe/Ni2(OH)2(L4) 
further confirmed the existence of Fe3+ in octahedral coordination 
(Supplementary Fig. 26c), in agreement with the partial replacement 
of Ni2+ cations by Fe3+ ions in NiO6 octahedra. This observation is 
consistent with the diffuse reflectance infrared Fourier transform 

spectra of Fe/Ni2(OH)2(L4) with a reduced O–H stretching peak at 
~3,600 cm−1 (Supplementary Fig. 27a), expected from the removal 
of protons from –OH groups in MHOFs upon Fe3+ substitution 
(Supplementary Fig. 27b). Thus, Fe-substituted (Ni2+)2(OH)2(L4) 
can be expressed as (Fe3+)0.2(Ni2+)1.8(OH)1.8(O)0.2(L4), having a 
charge compensation different from that in Fe-substituted Ni 
hydroxides, where the charge is compensated by the interlayer  
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Fig. 1 | Structural design and stability optimization of MHOFs. a, Schematic representation of the MHOF assembly process, illustrating metal 
hydroxide layers comprising edge-sharing metal-octahedral chains crosslinked with neighbouring chains via organic linkers (L1, terephthalate; L2, 
2,6-naphthalene dicarboxylate; L3, 4,4′-biphenyl dicarboxylate; L4, azobenzene-4,4′-dicarboxylate and L4F, 2,2′-difluoroazobenzene-4,4′-dicarboxylate). 
b, The structure of Ni2(OH)2(L4) viewed along the a direction. c, The structure of Ni2(OH)2(L4) viewed along the c direction. Insets: the coordination 
environments of two crystallographically independent Ni ions. Unit cell axes are indicated by the black arrows. Colour scheme: Ni, green; O from 
μ3-OH, red; O from μ3-COO, orange; C, black; N, purple; F, light green; H, white. Black boxes in b and c indicate a unit cell of MHOF. d, Powder X-ray 
diffraction of MHOFs with different linkers (L1, L2, L3, L4 and L4F) and metals (M2+ = Mn2+, Co2+, Ni2+, Cu2+ and Zn2+), where 2θ is the angle between 
the transmitted and reflected X-rays. e, Reconstructed 3D reciprocal lattice of Ni2(OH)2(L4) based on continuous rotation electron diffraction data along 
the a* direction. Inset: the MHOF crystal for continuous rotation electron diffraction data collection. f, HR-TEM image along the a direction (top) and the 
symmetry-imposed and lattice-averaged HR-TEM image along with the crystal structure overlaid on the image (bottom). g, Leaching percentage of linkers 
monitored by UV–vis spectroscopy during stability tests in 0.1 M KOH at room temperature. Linker leaching percentage is defined as the number of linkers 
in the solution divided by the number of linkers in MHOFs before the stability test, where the concentrations of L1, L2, L3, L4 and L4F were calculated 
from the UV–vis absorbance at 240 nm, 284 nm, 278 nm, 331 nm and 332 nm, respectively (Supplementary Fig. 7). h, Dependence of steady-state linker 
concentration after 24 h and linker leaching rate constant (Supplementary Fig. 10) normalized by the Brunauer–Emmett–Teller surface area of Ni2(OH)2(L) 
(L = L1, L2, L3, L4 and L4F) before leaching (time, t = 0) on the π-stacking energy of different organic linkers (Supplementary Fig. 9).

NATuRE MATERiALS | www.nature.com/naturematerials

http://www.nature.com/naturematerials


Articles Nature Materials

intercalation of anions (for example, CO3
2−, NO3

−, SO4
2− and Cl− 

(ref. 36); Supplementary Fig. 27c).
The redox potential of Ni centres at ~1.38 VRHE was found to shift 

positively with more acidic (that is, more electron-withdrawing) 
substituents in M/Ni2(OH)2(L4) (M = La3+, Zn2+, Y3+, Al3+, Sc3+ and 
Fe3+; Fig. 3a,b), as described by the lowered pKa of corresponding 
hydrated metal cations (that is, [M(H2O)m]n+)37. The Ni redox in  
M/Ni2(OH)2(L4) was evaluated using samples with similar sub-
stitution levels (12.5–17.9 at.%) since the substitution level can 
also influence the Ni redox potential (Supplementary Fig. 28 and 
Supplementary Note 3). Moreover, the dependence of the Ni redox 
potential of M/Ni2(OH)2(L4) on the acidity of substituents is much 
stronger than that of structural parameters such as the ionic radii of 
heterometals (Supplementary Fig. 29 and Supplementary Note 3).  
This result is consistent with the negligible changes of Ni–O and 
Ni···Ni atomic distances in substituted Ni2(OH)2(L4) nanosheets 
(Fig. 3c and Supplementary Fig. 30), as shown by the Ni K-edge 
extended X-ray absorption fine structure of M/Ni2(OH)2(L4) 
(Supplementary Figs. 31–34 and Supplementary Tables 8–15). 
Therefore, the change in the Ni redox potential of M/Ni2(OH)2(L4) 
(Fig. 3a) can be attributed mainly to a systematic inductive effect on 

the Ni–O bonds in substituted MHOFs introduced by the different 
electron-withdrawing nature of metal substituents.

Remarkably, the shift in the Ni redox of MHOFs upon metal 
substitution (up to ~0.1 V; Fig. 3b) was five times greater than that 
of substituted Ni hydroxides (~0.02 V) with similar substitution 
levels (~10 at.%)14; 12.5 at.% Fe-substituted Ni2(OH)2(L4) featured 
a Ni redox potential at 1.45 VRHE, considerably higher than that of 
Fe-substituted Ni hydroxides (1.37 VRHE, 10 at.% Fe (ref. 14); Fig. 3b). 
Taken together, these results show that the redox of metal centres in 
MHOFs can be tuned much more effectively relative to their metal 
oxide and hydroxide counterparts.

Tuning the OER activity of MHOFs by metal substitution
Incorporating increasingly electron-withdrawing heterometal sub-
stituents in M/Ni2(OH)2(L4) nanosheets markedly enhanced their 
OER activity. Galvanostatic measurements of M/Ni2(OH)2(L4) 
nanosheets showed that the steady-state OER overpotentials were 
reduced linearly with more acidic metals and more positively 
shifted pre-OER Ni redox (in the order of La3+ < Zn2+ < Y3+ < Al3+ 
< Sc3+ < Fe3+; Fig. 4a,b), in agreement with reduced OER potentials 
in CV measurements (Supplementary Fig. 35). This observation  
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Fig. 2 | Synthesis of MHOF nanosheets. a, Schematic representation of the growth direction of MHOF nanosheets. b,c, Scanning electron microscopy 
(b) and TEM images (c) of Ni2(OH)2(L4) nanosheets, showing the two-dimensional morphology and lattice fringes. d, TEM images and corresponding 
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is consistent with the functionalization of the L4 linkers with 
electron-withdrawing fluorine groups leading to a higher Ni redox 
potential and potentially increased activity (Supplementary Fig. 36 
and Supplementary Note 3). We thus postulate that the enhanced 
OER activity can be attributed to more electron-deficient Ni centres 
introduced by more acidic substituents via the inductive effect.

To elucidate the role of the inductive effect, we performed den-
sity functional theory (DFT) calculations of the pre-OER metal 
redox (Supplementary Tables 16 and 17) and OER energetics 
(Supplementary Table 18) on the (100) surface of Ni2(OH)2(L4) 
and Fe/Ni2(OH)2(L4). According to the surface Pourbaix diagrams 
(Supplementary Fig. 37), the surface Ni sites in Ni MHOFs are cov-
ered by adsorbed H2O species (H2Oad) at open circuit, consistent with 
the observation that such surface Ni ions are Ni2+ (Supplementary 
Fig. 38 and Supplementary Note 4). This result agrees with the 
observation that Ni MHOF nanosheets, with a higher portion of 
surface Ni than bulk Ni MHOFs, had more water removal from 
surface Ni2+ sites, as indicated by thermogravimetric analysis 
(Supplementary Fig. 17). Moreover, the Ni redox at 1.38 VRHE for 
Ni2(OH)2(L4) (Fig. 3a) can be attributed to Ni2+ oxidation coupled 
with the deprotonation of Ni–H2O into Ni–OH (for example,  
Ni2+–H2O + OH− → Ni3+–OH + H2O + e−; Fig. 4c), and the poten-
tial for Ni2+ oxidation in Fe/Ni MHOFs is higher than that in Ni 
MHOFs (Supplementary Fig. 38). These observations can be ratio-
nalized by the inductive effect. Specifically, Fe3+, with higher acidity 
than Ni2+, can pull electrons from neighbouring Ni–O bonds, low-
ering the electron energy associated with the oxidation of Ni2+ and 
shifting the corresponding Ni redox positively. Furthermore, based 

on the proton-coupled electron transfer (PCET) OER mechanism  
(Fig. 4c)4,9,27, Ni centres (*Ni–Ni–Ni, with * indicating the surface 
metal sites) in Ni2(OH)2(L4) were found to have a large barrier 
from OHad to Oad (0.56 eV at 1.6 VRHE; Fig. 4d). However, this bar-
rier is reduced substantially on the two Ni sites in Fe/Ni2(OH)2(L4) 
(Fig. 4d and Supplementary Fig. 39), where one Ni site (*Ni–Ni–Fe) 
has a barrier of 0.23 eV at 1.6 VRHE for rate-limiting OHad depro-
tonation, and the other (*Ni–Fe–Ni) has OHad adsorption as the 
rate-determining step (RDS) with a barrier of 0.3 eV at 1.6 VRHE. Such 
a reduced barrier is consistent with having highly acidic Fe3+ cations 
in Fe/Ni2(OH)2(L4), as Fe3+ destabilizes OHad on surface Ni sites, 
leading to a higher potential for the deprotonation of H2Oad to OHad 
and a reduced barrier for further OHad deprotonation (Fig. 4d).

These DFT results have examined the traditional PCET OER 
pathway involving only concerted proton–electron transfer steps of 
a single oxygenated species on a single metal site. While the surface 
Fe sites (*Fe–Ni–Ni) in Fe/Ni2(OH)2(L4) were found to have a lower 
barrier (0.11 eV for the RDS, O–O coupling, at 1.6 VRHE) than Ni 
sites (for example, 0.23 V for *Ni–Ni–Fe at 1.6 VRHE; Fig. 4d), further 
theoretical Tafel slope analysis based on the coverage of OER inter-
mediates before the RDS38,39 in the PCET energetics favours Ni sites 
as the active sites (Supplementary Fig. 40, Supplementary Table 19 
and Supplementary Note 5). Specifically, for *Fe–Ni–Ni sites (with 
O–O bond formation as the RDS), as all the steps before the RDS are 
energetically downhill at OER potentials (for example, 1.5–1.9 VRHE), 
such Fe sites are dominantly covered by Oad in this potential range 
and have a Tafel slope of 120 mV per decade (dec; Supplementary 
Fig. 40d). Similarly, *Ni–Fe–Ni centres (with OHad adsorption as the 
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RDS) are predicted to be covered by empty sites and show a Tafel 
slope of 120 mV dec−1 at OER potentials (Supplementary Fig. 40b). 
By contrast, *Ni–Ni–Fe sites, with OHad deprotonation as the RDS 
and an electrochemical pre-equilibrium step (that is, OHad adsorp-
tion on empty sites) before the RDS, are predicted to be covered by 
empty sites with a Tafel slope of 40 mV dec−1 below 1.7 VRHE, while 
above 1.9 VRHE, these *Ni–Ni–Fe sites are dominantly covered by 
OHad with a Tafel slope of 120 mV dec−1. Thus, compared with the 
other metal centres, the predicted Tafel slope of *Ni–Ni–Fe cen-
tres below 1.7 VRHE is in better agreement with the measured Tafel 
slopes of Fe/Ni MHOFs (between 35  mV dec−1 and 40 mV dec−1 at 
1.52–1.56 VRHE; Fig. 4a and Supplementary Table 20). Nevertheless, 
in light of the different schools of thought40–44 on the OER active 
centres in Fe/Ni hydroxides (Supplementary Note 6), more com-
plex pathways (for example, involving the joint contribution of 
surface Fe and Ni sites)42–44 need to be explored in future studies 
to fully understand the active sites in Fe/Ni MHOFs. This need is 

supported by the pH-dependent Ni redox (−17 mVRHE per pH unit) 
and OER potential (−19 mVRHE per pH unit) of Fe/Ni2(OH)2(L4) 
on the reversible hydrogen electrode scale (Supplementary Fig. 
41), which cannot be explained by the PCET mechanism (Fig. 4c). 
Such pH dependence suggests Ni redox and OER steps involving 
the non-concerted transfer of protons and electrons45–47, resulting 
in more complex intermediates and pathways beyond the conven-
tional PCET scheme (Supplementary Fig. 42 and Supplementary 
Note 7). Future work combining ab initio calculations and in situ 
spectroscopies can provide more mechanistic insights into the OER 
on Fe/Ni MHOFs.

Mixing Fe/Ni2(OH)2(L4) nanosheets with carbon markedly 
enhanced the percentage of electrochemically accessible Ni sites 
(from 0.1% to 16%; Supplementary Fig. 43), giving rise to an 
increase in mass activity by ~100 times to 80 A g−1

cat. at an overpo-
tential of 0.3 V (Fig. 5a), considerably higher than that of commer-
cial IrO2 catalysts measured in this work and reported previously48.  
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where E is the electrode potential, and Im is the mass-normalized current density. Heterometal substitution levels were 17.9 at.% for La, 17.0 at.% for Zn, 
17.6 at.% for Y, 15.9 at.% for Al, 16.7 at.% for Sc and 12.5 at.% for Fe (based on inductively coupled plasma optical emission spectroscopy measurements). 
b, OER steady-state potential (at 1 mA cm−2

geo., with iR correction) as a function of the pKa of hydrated metal cations [M(H2O)m]n+ (obtained from previous 
work)37 in metal-substituted Ni2(OH)2(L4) nanosheets and their pre-OER Ni redox centres (Fig. 3b). Error bars in a and b represent the standard deviations 
of at least three independent measurements. c, Proposed PCET OER cycle and the corresponding pre-OER Ni redox step for Ni and Fe/Ni MHOFs. d, DFT 
free energy diagrams of pre-OER Ni redox and PCET OER steps for the (100) surface of Ni2(OH)2(L4) and Fe/Ni2(OH)2(L4) at 1.6 VRHE. Ni redox energetics 
are plotted based on the driving force of pure Ni redox transitions for Ni2(OH)2(L4) and Fe/Ni2(OH)2(L4) (Supplementary Fig. 38). Energetic barriers of 
the RDS for all possible surface metal sites (highlighted with * and shown by surface models) are labelled in the free energy diagram. Colour scheme: Ni, 
green; Fe, yellow; O, red; C, black; H, white.
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On the other hand, the intrinsic activity of Fe/Ni2(OH)2(L4) 
nanosheets was unchanged with carbon addition (Fig. 5a). Fe/
Ni2(OH)2(L4)/C was found to have a high specific activity (with 
oxygen fluxes or TOFs of 0.30 O2 s−1 per electrochemically acces-
sible metal site as an upper bound, and 0.05 O2 s−1 per total metal 
site as a lower bound, at 0.3 V overpotential), comparing favour-
ably to state-of-the-art oxide catalysts46,49,50 (Supplementary Table 
1 and Supplementary Note 8). Carbon-supported Fe/Ni2(OH)2(L4) 
nanosheets were shown to provide steady-state current densities up 
to 50 milliamperes per geometric square centimeter (mA cm−2

geo.) 
for tens of hours in 0.1 M KOH (Supplementary Fig. 44), and TEM 
revealed no pronounced changes in the morphology and crystal-
linity after the OER at 1 mA cm−2

geo. for 20 h (Fig. 5b), highlighting 
the electrochemical stability of Fe/Ni2(OH)2(L4)/C under alkaline  
OER conditions.

In conclusion, we have developed a series of MHOFs combin-
ing the advantages of molecular catalysts (with highly tunable 
electronic structures) and metal oxides (with high stability under 
alkaline OER conditions). The stability of MHOFs is governed 
by π-stacking interactions between linkers connecting adjacent 
hydroxide layers, with Ni2(OH)2(L4) featuring the highest stabil-
ity in 0.1 M KOH. Reducing the dimensions of bulk MHOFs into 
nanosheets exposes more surface metal sites, resulting in a greater 
amount of electrochemically active surface areas. Substituting 
more acidic metal cations into Ni MHOFs was found to increase 
the redox potential of Ni as well as the OER activity, which can 
be attributed to electrons withdrawing from Ni via the inductive 
effect, leading to Fe/Ni2(OH)2(L4)/C with activity rivalling those of 
state-of-the-art OER catalysts. This work represents a step forward 
towards designing active metal centres with ligand fields akin to 
those in enzymatic systems. The compositional and structural flex-
ibility of MHOFs offers immense opportunities to engineer tunable 
redox properties and catalytic activity for processes including the  
OER and beyond.
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Methods
Materials and instrumentation. All reagents and solvents were commercially 
available and used as received. The H2L1 (terephthalic acid), H2L2 (2,6-naphthalene 
dicarboxylic acid) and H2L3 (4,4′-biphenyl dicarboxylic acid) were purchased  
from Sigma-Aldrich, while H2L4 (azobenzene-4,4′-dicarboxylic acid) and  
H2L4F (2,2′-difluoroazobenzene-4,4′-dicarboxylic acid) were synthesized 
using a method reported in the literature51 with modifications (details in the 
Supplementary Information). Gas sorption measurements were conducted  
using a Micrometritics ASAP 2020 system. Powder X-ray diffraction was carried  
out with a Bruker D8-Focus Bragg-Brentano X-ray powder diffractometer 
equipped with a Cu-sealed tube (wavelength, λ = 1.5418 Å) at 40 kV and 40 mA. 
Ultraviolet–visible (UV–vis) absorption spectra were recorded on a Cary  
5000 UV–Vis–NIR spectrophotometer. Thermogravimetric analysis was  
conducted on a TA Instruments Q500 thermogravimetric analyser. Inductively 
coupled plasma optical emission spectroscopy data were collected with an  
Agilent 5100 DVD inductively coupled plasma optical emission spectrometer. 
Atomic force microscopy data were collected with a Dimension 3000 scanning 
probe microscope. TEM experiments were conducted on a JEOL JEM2100 
microscope at 200 kV, where images were recorded using a Gatan Orius  
833 CCD (charge-coupled device) camera under low-dose conditions. HR-TEM 
experiments were performed on a FEI Tecnai G2 F30 microscope at an accelerating 
voltage of 300 kV and an image-spherical-aberration-corrected FEI Titan 80-300 
microscope at 300 kV. High-angle annular dark-field scanning transmission 
electron microscopy imaging and energy-dispersive X-ray mapping were 
conducted with a Talos F200X microscope equipped with a Super-X EDXS detector 
system (FEI) at 200 kV. Scanning electron microscopy images were collected 
on a FEI Quanta 600 field emission scanning electron microscope (America) at 
20 kV, where 10 nm platinum/palladium films were sputtered on samples before 
the measurements. XPS was performed with a Thermo Scientific K-Alpha ESCA 
spectrometer using monochromatic Al Kα radiation (1,486.6 eV) and a low-energy 
flood gun as a neutralizer, and the binding energy of the C 1s peak at 284.6 eV was 
used as a reference. More details are provided in the Supplementary Information.

Synthesis of bulk MHOFs. Generally, bulk MHOFs were prepared by the reaction 
between M(OH)2 and a carboxylate linker under solvothermal conditions at 
120 °C. Taking Ni2(OH)2(L4) as an example, freshly prepared Ni(OH)2 precursor 
(50 mg, 0.54 mmol), H2L4 (70 mg, 0.26 mmol), N,N-dimethylformamide (DMF; 
16 ml), water (1 ml) and ethanol (1 ml) were charged into a Pyrex vial. The mixture 
was heated at 120 °C for 12 h. After cooling to room temperature, the product was 
collected by centrifugation, washed with DMF (two times) and acetone (two times) 
and dried at 100 °C under vacuum (95 mg, 87 at.% yield). More details are provided 
in the Supplementary Information.

Synthesis of Ni2(OH)2(L4) nanosheets. The NiCl2·6H2O (100 mg, 0.42 mmol), 
H2L4 (100 mg, 0.37 mmol), DMF (16 ml), water (1 ml) and ethanol (1 ml) were 
charged into a Pyrex vial. The mixture was heated at 120 °C for 12 h. After cooling 
to room temperature, the product was collected by centrifugation, dispersed  
in ethanol, sonicated for 30 min and dried at 100 °C under vacuum (75 mg,  
85 at.% yield).

Synthesis of M/Ni2(OH)2(L4) nanosheets. Generally, metal-substituted MHOF 
nanosheets were prepared by the reaction between NiCl2·6H2O, H2L4 and 
respective heterometal salts under solvothermal conditions at 120 °C. Taking Fe/
Ni2(OH)2(L4) as an example, NiCl2·6H2O (90 mg, 0.38 mmol), FeCl2·4H2O (10 mg, 
0.05 mmol), H2L4 (100 mg, 0.37 mmol), DMF (16 ml), water (1 ml) and ethanol 
(1 ml) were charged into a Pyrex vial. The mixture was heated at 120 °C for 12 h. 
After cooling to room temperature, the product was collected by centrifugation, 
dispersed in ethanol, sonicated for 30 min and dried at 100 °C under vacuum 
(70 mg, 78 at.% yield). The Fe/(Ni + Fe) ratio was determined to be 12.5 at.% by 
inductively coupled plasma optical emission spectroscopy.

Electrochemical measurements of OER activities. Electrodes for CV and 
galvanostatic measurements were prepared by drop-casting an ink containing 
oxide catalyst powder on a glassy carbon electrode. Typically, the ink contained 
5 mg MHOFs, 2 ml water/ethanol (2:3) and 0.01 ml 5 wt% Nafion solution. The 
glassy carbon electrode surface (0.196 cm2) was loaded with 125 µg cm−2

geo. of the 
catalyst and 20 µg cm−2

geo. of Nafion, while an additional 25 μg cm−2
geo. of acid-treated 

acetylene carbon black was used for Fe/Ni2(OH)2(L4)/C. Electrochemical 
measurements were performed using a glass electrochemical cell with Ag/AgCl 
reference electrode and Pt counter electrode in a rotating disk electrode set-up  
in Ar- or O2-saturated KOH (99.99% purity, Sigma-Aldrich) electrolytes.  
The Ag/AgCl reference electrode was calibrated in the same electrolyte by 

measuring the hydrogen oxidation/evolution using a platinum working electrode 
and defining the point of zero current as 0 VRHE. The potential was controlled  
using a Biologic VSP-300 potentiostat. CV measurements were performed at  
a scan rate of 10 mV s−1, while galvanostatic measurements were performed at 
different current densities at a rotation speed of 1,600 r.p.m. Ohmic losses were 
corrected by subtracting the ohmic drop from the measured potential using 
an electrolyte resistance determined by high-frequency alternating current 
impedance, where iR-corrected potentials are denoted as E − iR (with i as the 
current and R as the electrolyte resistance). More details are provided in the 
Supplementary Information.

Data availability
The X-ray crystallographic data for structures reported in this article have 
been deposited at the Cambridge Crystallographic Data Centre (CCDC) under 
deposition numbers CCDC 2120871, 2120868, 2120869 and 2120870 for 
Ni2(OH)2(L1), Ni2(OH)2(L2), Ni2(OH)2(L3) and Ni2(OH)2(L4), respectively, which 
can be obtained from the CCDC via https://www.ccdc.cam.ac.uk/structures/. 
All other data that support the results in this study are available from the 
corresponding authors upon reasonable request.
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