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The synthesis of crystalline materials, such as zeolites, remains a notable

challenge owing to a high-dimensional synthesis space, intricate
structure-synthesis relationships and time-consuming experiments. Here,
considering the ‘one-to-many’ relationship between structure and synthesis,
we propose DiffSyn, a generative diffusion model trained on over 23,000
synthesis recipes that span 50 years of literature. DiffSyn generates probable
synthesis routes conditioned on a desired zeolite structure and an organic
template. DiffSyn a chieves state-of-the-art performance by capturing

the multi-modal nature of structure-synthesis relationships. We apply
Diffsny to differentiate among competing phases and generate optimal
synthesis routes. As a proof of concept, we synthesize a UFI material using
DiffSyn-generated synthesis routes. These routes, rationalized by density
functional theory binding energies, resulted in the successful synthesis

of a UFI material with a high Si/Al,., of 19.0, which is expected toimprove

thermal stability.

Materials discovery lays the foundation for modern technologies, from
catalysis to electronics'. Recent large-scale computational searches of
chemical composition and structures® have uncovered millions of
potentially stable, synthesizable materials (‘what’ to synthesize)>°%.
However, finding viable synthesis routes remains abottleneck in materi-
als discovery (‘how’ to synthesize)’'? because there are many synthe-
sis parameters (composition, conditions and so on) that interact in
complex ways. Moreover, the compute required for atomistic simu-
lations scales poorly with system size, precluding accurate modeling
of the underlying physical phenomena in complex materials (that is,
thermodynamics and kinetics)". Consequently, there is continued
interest in machine learning (ML) approaches to directly learn from
experimental synthesis datato predict materials synthesis parameters
at lower computational cost'"*,

Materials synthesis prediction presents aunique challenge for ML
for several reasons. First, structure-synthesis relationships are ‘one-
to-many’—thatis, asingle target structure may formthrough multiple

possible synthesis recipes. Second, the inverse relationship (synthesis—
structure) is also one-to-many—that is, a single recipe may result in
the formation of a mixture of products (competing phases) owing
to the complex interplay of thermodynamic and kinetic pathways".
Capturing this phase competition is crucial to selectively synthesize
single-phase materials instead of mixtures. Third, complex nonlinear
interactions exist between synthesis parameters, such as tempera-
ture and time" (Supplementary Fig. 10), requiring approaches that
modeljoint probabilities across multiple synthesis parameters. Predic-
tions must capture relationships among variables to make trade-offs
between parameters leveraging physical information about materials
synthesis (for example, crystallization kinetics).

Previous ML approaches to predict synthesis have predomi-
nantly used regression approaches*, which deterministically
map a representation (for example, composition'®", structural
features'®, graphs®) of a material to its synthesis parameters. These
approaches are limited because the deterministic mapping is
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incompatible with the one-to-many nature of structure-synthesis rela-
tionships and assume independence between synthesis parameters'®"”
(Supplementary Fig. 4).

These factors limit the predictive accuracy of regression
approaches and motivate ashift to generative models, which cansam-
ple acomplexdistribution thataccounts for the nonlinear interactions
between parameters in high-dimensional synthesis space.

To address these challenges, we introduce a diffusion model for
materials synthesis. Diffusion models are apowerful class of generative
models that have been demonstrated to generate novel, high-quality
images conditioned on text?**. Diffusion models can be guided ateach
step of the denoising process toward a specific objective (for exam-
ple, target material)*>*. Unlike generative adversarial networks that
suffer from mode collapse?, diffusion models can generate diverse
outputs because they are trained to denoise data (for example, asyn-
thesis route) that have been corrupted with noise. Other generative
approaches, namely, variational autoencoders and normalizing flows,
havelimited expressivity duetoone-step decoding and affineinvertible
layers, respectively. In contrast, theiterative denoising process renders
diffusionmodels highly expressive, which enables highsample quality®.
This high expressivity may enable diffusion models to capture bounda-
ries in synthesis space between competing phases.

We propose DiffSyn, a diffusion approach to materials synthesis
prediction, and demonstrate it on zeolites, which are crystalline,
microporous materials with applicationsin catalysis, adsorption and
ion exchange. Zeolite synthesis is challenging owing to its high dimen-
sionality (Fig. 1a), with numerous variables influencing the synthesis
outcome (Supplementary Fig. 1). Moreover, multiple modes of valid
synthesis routes exist for a given structure (Supplementary Fig. 5).
Progress in zeolite synthesis has focused on trial-and-error experi-
ments guided by domain heuristics®. We leverage guided diffusion
models for materials synthesis prediction, which show state-of-the-art
performance compared with regression-based and other deep gen-
erative approaches. We show that the performance of DiffSyn arises
from its ability to capture the one-to-many and multi-modal nature
of structure-synthesis relationship in materials. We experimen-
tally validate our approach by synthesizing the UFI zeolite based on
DiffSyn-generated synthesis routes. We rationalize these routes using
density functional theory (DFT) calculations of inorganic cations that
guide UFIsynthesis. Together, these results indicate that DiffSyn learns
the underlying chemistry thatinfluences synthesis outcomesimplicitly
from published synthesis recipes.

Results

DiffSyn framework for materials synthesis planning
Chemically guided diffusion model. Diffsyn leverages a chemically
guided diffusion model for predicting materials synthesis routes with
thetarget zeolite structure c,., and the organic structure-directing agent
(OSDA) cospa asinputs (Fig. 1b). An OSDA is an organic molecule that tem-
plates the zeolite’s pores (Supplementary Fig. 1e), directing the synthe-
sistoward the formation of aspecific structure. Previous work has shown
that the optimal OSDA to synthesize agiven structure can beidentified
fromatomistic simulations®". The goal is tolearn p(Xeomp» Xcond|Czeor Cospa)
to generate an ensemble of synthesis routes consisting of gel composi-
tions {X..m,} and synthesis conditions {x,,q} given atarget structureand
OSDA, asshownin SupplementaryFig. 2 (alsoknown as synthesis param-
eters, defined in Supplementary Table 1). Supplementary Fig. 4 shows
an example of the predicted versus ground-truth synthesis param-
eters (green points). The prediction of synthesis parameters is an
under-determined problem with multiple possible valid synthesis
routes {Xcomps Xcona} fOr €ach ¢,q, and cospy.

Duringtraining, the forward diffusion process (red arrow in Fig. 1b)
adds Gaussian noise to X om, and X,nq, progressively mapping themto
a Gaussian distribution (noise). During inference, the reverse diffu-
sion process (green arrow in Fig. 1b) starts from Gaussian noise and

iteratively denoises using a U-Net*’ conditioned on chemical guidance

(‘Representation learning of materials’ section) via classifier-free guid-
ance (Fig. 1c). After Ttimesteps of denoising, the model generates syn-
thesisroutes foradesired structure. This denoising process can be seen
in the improvement of generation metrics (for example, Wasserstein
distance and COV-P, defined in ‘Metrics’ in Methods) throughout the
reverse diffusion process (Supplementary Fig. 7). We train Diffsyn on
the ZeoSyn dataset™, which consists of 23,961 synthesis recipes, 233
zeolite topologies and 921 OSDAs (Supplementary Section A).

Representation learning of materials. DiffSynintegrates adual-encoder
approach consisting of separate encoders (Enc,., and Encgp,) for the
zeolitestructure and OSDA, respectively (Fig.1b). We use two representa-
tions of the zeolite structure: invariant geometric features and an equiv-
ariant graph neural network (EGNN). The invariant geometric features
arephysical descriptors (for example, pore volume) calculated fromthe
zeolite structure using the Zeo++ package. The EGNN encoder directly
learns arepresentationfromagraphofthe zeolite crystal structure (Sup-
plementary Section D). For the OSDA, we perform molecular geometry
relaxation and calculate its physicochemical descriptors (for example,
volume and shape) (‘Zeolite and OSDA representations’ in Methods).
Figure 1d shows that the respective encoders learn smooth and
continuous latent spaces with respect to the properties of zeolites and
OSDAs. Acomprehensive set of properties plotted inembedding space
can be found in Supplementary Figs. 8 and 9, indicating chemically
meaningful representations of zeolites and OSDAs. These represen-
tations are concatenated before a fusion encoder (Ency,;,,,) learns a
jointrepresentation. We refer to the joint representation as chemical
guidance (Fig. 1b). Chemically meaningful representations are pivotal
in steering the diffusion model to generate realistic synthesis routes
foradesired materials structure. This representation enables DiffSyn
togenerate synthesis parameters that reflect synthesis routes unseen
intraining, which have beenreportedin the literature (Fig. 2e).

Influence of chemical guidance in diffusion model. Classifier-free
guidance*isacritical component of DiffSyn, where the chemical guid-
ance steers the generation process by reweighing the unconditional
score function with a conditional score function (‘Chemically guided
diffusion model’ inMethods). We probe the influence of two key hyper-
parameters related to classifier-free guidance: the probability of the
chemical guidance being omitted in score estimation during training
(Puncona) @nd the guidance strength that weighs the conditional score
relative to the unconditional score during inference (w; equation (7)).

Higher values of p...ns and w amplify the conditional score,
making the sampling process more dependent on the chemical guid-
ance. This increased dependence on chemical guidance canresult in
over-constrained outputs, reducing diversity and potentially missing
valid synthesis routes. Lower values of p,,..ns and w reduce the influ-
ence of the chemical guidance, potentially decreasing specificity and
generating synthesis recipes that are less tailored to the target struc-
ture, but improving the diversity of recipes. We find that the balance
between diversity and quality of generated synthesis routes occurs at
Puncond = 0.1and w =1.0 (Supplementary Fig. 6).

Modeling structure-synthesis relationships

We evaluate DiffSyn against a suite of previously published approaches
in materials synthesis planning. These baseline models fall into three
categories: regression-based approaches (average minimum distance
(AMD)'® and Bayesian neural networks (BNN)*); classical generative
models (Gaussian mixture model (GMM)**); and deep generative mod-
els (conditional generative adversarial network (GAN)*, normalizing
flow (NF)*® and variational autoencoder (VAE)""). More information
about these baselines is included in ‘Baselines’ in Methods. We com-
pare approaches using Wasserstein distance (lower is better), which
measures the distance between the generated and ground-truth
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Fig. 1| A diffusion approach to materials synthesis planning. a, Materials, such
as zeolites, often have an one-to-many structure-synthesis relationship, where a
structure c,., can be synthesized via multiple possible synthesis routesin a
high-dimensional synthesis space (compositions {X.,m,} and conditions {X.,q}).
b, Overview of DiffSyn: given a desired zeolite structure c,., and an OSDA cygp,
the model py(Xcomps Xcond|C2eor Cospa) gENETates an ensemble of synthesis routes
{Xcomp} and {Xcona} via reverse diffusion (green arrow) that matches ground-
truth synthesis routes {x.,n,}, accurately capturing the aforementioned
one-to-many structure-synthesis relationship with which previous methods
struggle. Note: only {Xcomp} is shown. ¢, Model architecture: two separate

encoders embed the zeolite material c,., and organic template c,gp, before their
latent representations are concatenated. The joint representation steers the
generation process from noise (Xcomp, > Xcond,r ~ N (0, D)) to realistic synthesis
routes specific to the zeolite and OSDA via classifier-free guidance by learning
Ho(Xe, b, Crear CosDA)= 2= (X = = €9(Xes s s Cospn)) Where ep(-) s a
conditional U-Net trained to predict the noise at time ¢ (‘Denoising diffusion
probabilistic models’ in Methods). Note that x,,, and x.,,q are jointly noised and
denoised. d, PCA of learned representations of zeolites and OSDAs. The color
bar refers to a specific physical property (as shown in each title).

distributions of literature-reported synthesis parameters for unseen
zeolite-OSDA systems. In addition, we propose the coverage metric
COV-F1. The model should maximize both COV-P (precision) and COV-R
(recall) simultaneously. Therefore, their harmonic mean (COV-F1) meas-
ures the degree of generated recipes being both realistic and diverse
(ranges from O to 1, higher is better). Detailed explanations of these
metrics are in ‘Metrics’ in Methods and Supplementary Section C.

Generative approaches better model structure-synthesis relation-
ships. Wasserstein distances show that deep generative models such
as GAN, NF, VAE and DiffSyn outperform the classical approaches,
with DiffSyn outperforming the next best baseline (VAE) by over 25%.
Classical generative approaches like GMM do not perform much better
thanarandombaseline (Fig.2a) while a probabilistic regression model
(BNN) performs better than GMM.

The COV-F1 of 12 synthesis parameters are shown in Fig. 2b. The
models performbetter on synthesis parametersrelated to heteroatoms

(Si/Al, Al/P,Si/Ge, Si/B), cations (Na*/T,K"/T) and anions (F /T, OH™/T),
where T refers to the sum of all heteroatoms. However, they struggle
to predict crystallization time, which could be attributed to anthropo-
genic factors; crystallization times are subject to human bias, where
experimentalists test and report ‘rounded’ numbers®. This bias results
intheground-true time distribution peaking at specificintervals, hence
rendering time prediction more challenging.

Deep generative approaches (VAE, NF and DiffSyn) outperform
regression-based approaches (AMD and BNN). We hypothesize that
generative models have superior performance owing to better recall
(higher COV-R; Supplementary Fig. 3). Meanwhile, DiffSyne outper-
forms other deep generative models owing to higher precision (higher
COV-P; Supplementary Fig. 3), where the diffusion model generates
higher-quality synthesis routes. Interestingly, DiffSyn achieves the low-
estmean absolute error for 10 out of 12 synthesis parameters (Fig. 2c),
despite not being explicitly trained on the mean absolute error objec-
tive like the regression-based models.
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Fig. 2| Performance in materials synthesis prediction task. a, Wasserstein
distance (lower is better) between generated and literature synthesis routes. Metric
isaveraged across all test systems. Error bars correspond to standard deviation
across threeindependent training runs. b, COV-F1 (higher is better, ranging from
0to1) ofindividual synthesis parameters (gel composition and conditions).

¢, Meanabsolute error between the means of distribution of generated and literature
synthesis parameters. d, Distributions of predicted and true synthesis parameters

temperature (°C) time (h)

across various different modeling approaches. AMD (dark blue) is regression-
based (outputs deterministic, single-point prediction), while GAN (light blue)
suffers from mode collapse. NF and VAE output distributions do not match the
ground truth (gray). DiffSyn (red) accurately captures the true distribution (gray)
ofthe synthesis parameters. e, DiffSyn-generated synthesis routes (orange) and
distribution of synthesis routes reported in literature (blue). Synthesis parameters
are aggregated across all unseen zeolite-OSDA systems.

Rationalizing the superior performance of generative approaches.
For a given target material, there are a range of possible values for
each synthesis parameter (for example, temperature) at which a
material can be synthesized (that is, synthesis window). We show

the distribution of crystallization times from published syntheses
(gray, Fig.2d).

This distribution of synthesis parameters renders struc-
ture-synthesis relationship one-to-many instead of one-to-one.
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Regression-based AMD is deterministic, and thus outputs a point
prediction that comes from a weighted average of the distribution
(Fig. 2d). Generative models like GAN also output a point prediction as
they often suffer from mode collapse®. Although generative models
such as NF and VAE address mode collapse, they lack expressivity and
fail to accurately capture the ground-truth literature distribution. In
contrast, DiffSyn captures the ground-truth distribution. Furthermore,
we compare the predicted and true joint distributions of multiple
synthesis parameters for all of these approaches for the AEL zeolite
(Supplementary Fig.4). Only deep generative approaches (NF, VAE and
DiffSyn) capture the ground-truthjoint distribution of crystallization
temperatures and times for the AEL structure, with DiffSyn most accu-
rately capturing that joint distribution. DiffSyn captures most of the
ground-truth points, including some outliers; however, DiffSyn fails to
predictpointsinaminor mode (bottomright of guided diffusion panel
inSupplementary Fig. 4), which are extreme outliers (for example, low
crystallization temperature and long crystallization time).

The distribution of synthesis parameters is also multi-modal.
We plot the principal components of all synthesis parameters for
the aforementioned AEL structure in Supplementary Fig. 5, which
shows that the true distribution has multiple modes—two in this case.
Regression-based models (AMD, BNN) predict only one of the modes.
GMM predicts synthesis routes that are far out of distribution. GAN
suffers from mode collapse to one of the modes. NF and VAE capture
both modes, but also generate a large number of false positives. This
behavior arises from the low expressivity of VAEs and NFs, which use
one-step decoding and affine invertible layers, respectively. Incontrast,
DiffSynaccurately predicts the true distribution because it generates
high-quality and diverse outputs. Consequently, DiffSyn generates
synthesis routes that overlap with unseen literature-reported synthesis
parameters (Fig. 2e). Foradiscussion ondiversity of generated samples,
refer to Supplementary Section B.

Learning chemically meaningful relationships. We perform an
unsupervised, hierarchical clustering of zeolite structures based on
their learned representations (Fig. 3a), and observe distinct clusters
according to their corresponding structural features (for example,
number of channels, largest free sphere diameter). The clustering
indicates that the zeolite encoder haslearned to separate structurally
distinct materials. Consequently, the chemical guidance (Fig. 1b), which
requires learning good representations of the zeolite and OSDA, guides
the generative process toward the desired target material.

Given that DiffSynt learns the joint distribution of multiple syn-
thesis parameters, we inspect two synthesis parameters (crystalliza-
tion temperature and time) in Supplementary Fig. 10 for two unseen
zeolite-OSDA systems. An inverse relationship is observed between
generated temperatures and times. This observation aligns well with
the Arrhenius equation

—Ea

k=Aerr, 1

where crystallization time (related torate k) isinversely related to tem-
perature T. A, E, and R refer to Arrhenius constant, activation energy
and gas constant, respectively. Inaddition, the generated H,O/T (here,
Trefers to tetrahedral framework atoms or T-atoms, rather than tem-
perature) and framework density (FDg;) of the zeolite structure correlate

positively (Spearman’s coefficient 0.673; Supplementary Fig. 11). This
finding agrees with Villaescusa’s rule®®, which states that denser phases
(higher FDg;) are favored at lower concentrations of T-atoms (higher
H,0/T), showing that DiffSyn has learned domain-specific rulesin mate-
rials synthesis. The model predictions also follow the thermodynamics
ofzeolite formation, where the generated crystallization temperature
and framework density (FDg;) of the zeolite structure positively corre-
late (Spearman’s coefficient 0.931; Supplementary Fig. 12). This find-
ing agrees with the thermodynamic argument from Ostwald’s rule of
stages, which states that higher temperatures enable the synthesis to
overcome the activation barrier to form more stable structures with
higher framework densities'*.

Case studies

We compare DiffSyn-generated synthesis routes to literature-reported
synthesis routes for diverse zeolite-OSDA systems that are syntheti-
callyinteresting and industrially useful. The generated routes for these
unseen systems (MWW, BEC and a pair of competing phases—FAU
and LTA) provide evidence of DiffSyn learning meaningful synthesis—
structure relationships (Fig. 3). Other systems (MTT and ATO) are ana-
lyzed in Supplementary Figs. 13 and 14, respectively.

We first consider the MWW phase, a unique two-dimensional
structure with 10-membered rings and large cavities, with applications
including isomerization*® and aromatization*. The generated OH /T,
K*/T,H,0/T,SDA/T, and crystallization temperature and time overlap
substantially with ground-truth synthesis parameters (Fig. 3b). We also
test the model on asignificantly different structure: BEC, alarge-pore
zeolite. BEC has a three-dimensional pore topology with intersecting
12-membered ring channels, with applications in isomerization** and
epoxidation®. DiffSyn-generated synthesis parameters closely agree
with synthesis parameters reported in the literature, particularly
Si/Ge, F/T,and crystallization temperature and time (Fig. 3c). This pre-
dictionaligns withreportsthat Geand Fstabilize the double fourring
(d4r) composite building unit of the BEC structure during synthesis**.
This finding suggests that DiffSyn learns how particular heteroatoms
or synthesis conditions favor the formation of specific building units
within zeolites. However, the generated synthesis parameters do not
always fully recall the ground truth for BEC synthesis. For example, the
modelfails to predict the full range of possible SDA/T values that have
beenidentified in past recipes (SDA/T = 0.15-0.25; Fig. 3¢).

Typically, materials synthesis aims to produce asingle framework;
however, if two phases during synthesis compete, some recipes result
in two or more phases. Here we applied DiffSyn to predict OSDA-free
synthesis routes for the FAU and LTA zeolites®. Synthesis routes gener-
ated by DiffSyn align closely with literature-reported recipes (Fig. 3d).
Notably, DiffSynaccurately predicts the phase boundary region (green)
between FAU and LTA in OSDA-free conditions, delineating the synthe-
sis space under which the competing phases form. This result shows
that DiffSyn accurately captures not only the forward relationship
(structure-synthesis) but also the decision boundaries of the inverse
relationship (synthesis-structure), hence demonstrating its poten-
tial to enable phase-selective synthesis. Similarly, we demonstrate
this capability for another pair of competing phases (ERI and KFI) in
Supplementary Fig. 15. Taken together, these case studies illustrate
DiffSyn’s ability to generalize to a variety of zeolite frameworks and
their corresponding chemistries.

Fig. 3| Case studies on unseen materials systems. a, Hierarchical clustering of
zeolite structures. Splits are obtained via agglomerative hierarchical clustering
of learned zeolite representations. Each structure (with a three-letter code as
its name) is colored by its number of channels (NC) in purple, and its largest
free sphere (LFS) in orange. This leads to several distinct clusters: (1) high NC,
low LFS; (2) low NC, low + high LFS; (3) high NC, low + high LFS; (4) low NC, high
LFS; (5) low + high NC, high LFS; (6) high NC, high LFS. b,c, Generated synthesis
routes for unseen materials systems. b, MWW structure (in cluster 5) with

N,N,N-trimethylhexan-1-aminium as the OSDA. ¢, BEC structure (in cluster 4)
with pentane-1,5-diyl-bis(trimethylammonium) as the OSDA. Orange heatmaps
refer to synthesis routes generated by DiffSyn, while blue points refer to
literature-reported synthesis routes. d, Competing phases FAU and LTA

(in cluster 5). Heatmaps refer to generated routes, while points refer to
literature-reported synthesis routes. Notice that the model accurately

predicts the phase boundary (green shaded region) between FAU and LTA.
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d, Distributions of generated synthesis parameters along the Pareto front.

Generating optimal synthesis routes

We use DiffSyn to generate more feasible synthesis routes (Fig. 4a),
by evaluating and ranking the generated synthesis routes based on
precursor cost and crystallization time (Supplementary Table 2) using
methods reportedinref.46. We apply this approach to the synthesis of
CHA, using trimethyladamantyl ammonium (TMAda) as the OSDA",
and generate an ensemble of synthesis routes with corresponding pre-
cursor costs and crystallization times (Fig. 4b). Among the generated
routes, there are Pareto-optimal routes that trade offlow precursor cost
and fast synthesis time. These two objectives are optimal in different
regions in the synthesis space—the OSDAs that produce CHA crystals
faster tend tobe more expensive (Supplementary Fig. 16). Some of these
Pareto-optimal routes generated by DiffSyn have lower crystallization
time and lower precursor cost compared with the 20 least expensive
synthesis routes reported in the literature.

We inspect the evolution of synthesis parameters on the Pareto
front. Notably, Al/Siand NaOH/Siremain relatively constant (Fig. 4c).
In contrast, SDA/Si decreases as we prioritize lower cost over faster
reaction as the OSDA typically drives precursor cost. The distributions
of generated synthesis parameters also change along the Pareto front
(Fig. 4d). This analysis reveals that increasing the crystallization tem-
perature from140 °Cto 160 °C while simultaneously increasing NaOH/
Siand OSDA/Si would favor faster reaction (Fig. 4d). This assessment
shows how varying the joint distributions of synthesis parameters can
accelerate synthesis (synthesizing desired structure inshorter time at
higher temperature).

Experimental and DFT validation

We validate DiffSyn by experimentally synthesizing a UFl zeolite from
recipes generated by our model with Kryptofix 222 (K222) as the OSDA*®
(Fig. 5). UFI has potential applications in industrially relevant reac-
tions (for example, selective catalytic reduction of NO, (ref. 49)). The

UFI-K222 system has not beenreportedin previousliterature and is not
presentin the training dataset, and hence serves as a test of DiffSyn’s
out-of-distribution generalization.

Figure 5a shows the PCA of 1,000 DiffSyn-generated syn-
thesis routes for UFI (orange), which constitutes a subspace of
literature-reported synthesis routes for all zeolites (gray). We retrieve
the k-nearest neighbors (k = 5) of generated UFI synthesis from the
literature-reported synthesis routes (Supplementary Fig.17). Among
the retrieved syntheses, the top-two most similar frameworks (PAU
and RHO) share acommon /ta composite building unit (CBU) with UFI
(Supplementary Fig. 18). Beyond this, the remaining frameworks do
not share any common CBUs with UFI. This observation is supported
by aprevious work*’ reporting that the majority of competing phases
do not share any CBUs, suggesting that structure-synthesis relation-
shipsare complex and cannotbe rationalized with building units alone.

We visualize individual synthesis parameters of generated routes
in Fig. 5e (orange histograms), including gel compositions (Si/Al,
Ge/Si, B/Si,Na*/Si, K*/Si, H,0/Si, F/Si) and reaction conditions (crystal-
lization temperature and time). For inorganic cations, DiffSyn recom-
mends high Na*/Si and low K*/Si for UFI synthesis (Fig. 5e). We
rationalize this observation by calculating binding energies (AE,) of
inorganic cations (Na* and K*) in building units of UFI (wbc and rth)
using DFT as shown in Fig. 5b (details in ‘DFT methods’ in Methods).
The calculations reveal that Na* binds more strongly to wbc and
rth (AEf)Ol =-70 k) mol™ and +13 k) mol™) compared with K*
(AE;"l =-50 k) moland +63 k) mol™), suggesting that Na*ions stabilize
building units of UFI better thanK'. These binding energies explain the
high Na*/Si and low K*/Si in DiffSyn-generated routes.

We experimentally test the DiffSyn-generated routes for UFI, result-
inginfour successful experimental syntheses of the UFImaterial (Fig. 5a,
blue). Powder X-ray diffraction patterns for synthesized UFl samples
closely match the simulated diffraction pattern (Fig. 5¢), confirming
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with K*) favors UFI formation. This rationalizes why DiffSyn suggested synthesis
routes with high Na*/Siand low K'/Si for UFI (in e). ¢, Simulated and measured
X-ray diffraction patterns of the synthesized UFI samples. d, Scanning electron
microscopy image of UFI. e, Distributions of individual synthesis parameters.
Blue are experimentally verified synthesis routes, orange is DiffSyn-generated
and gray is all literature-reported routes.

that the crystallized material has the UFI structure. The resultant crys-
tals had a measured Si/Al,, 0f 19.0, one of the highest recorded in UFI
synthesis (see ‘Elemental analysis’ in Methods for details on Si/Al,).
This composition is important because higher Si/Al,.; is associated
with higher thermal stability under catalytic conditions". In addition,
the crystals show ahouse-of-cards morphology (Fig. 5d), making them
highly promising catalysts for a diverse range of applications.

While the experimentally verified synthesis routes fall within the
generated distributions, the model generated unusually low crystal-
lization temperatures with a major mode at 100-150 °C (Fig. 5e). The
generated minor mode at175 °Cwas chosen based ondomain expertise
because higher temperatures accelerate crystallization kinetics and
higher temperatures (>170 °C) avoid the formation of the undesired LTA
competing phase. The higher temperature allowed us to use arelatively
shorter crystallization time of 7 days (168 hours). These considerations
underscore a powerful synergy between model and human expertise to
achieve the desired synthesis outcome. Nonetheless, DiffSyn generated
nine out of ten synthesis parameters as the major mode. The successful
synthesis of UFI, enabled by, DiffSynis a testament to DiffSyn learning
theintricacies of zeolite synthesis without explicit chemical encodings
and highlights its ability to recommend suitable synthesis parameters
for unseen materials systems.

Discussion

Zeolite synthesis is a complex task with a high-dimensional space
where synthesis parameters interact. This complexity underscores
the need for generative models that capture the intricacies of materi-
als synthesis and circumvent expensive first-principles approaches.
By capturing the one-to-many and multi-modal nature of structure-
synthesis relationships, DiffSyn outperforms previous methods for
zeolite synthesis prediction.

DiffSyn requires the OSDA to be known a priori. Including the
OSDA as an input ensures that the model captures the influence of
the organic template. Recent work on OSDA design has enabled the
selection of suitable OSDA inputs into DiffSyn?**2, The combination
of OSDA design tools and DiffSyn could enable an end-to-end predic-
tive workflow for zeolite synthesis. While our work focuses solely on
continuous variables, the synthesis outcome canalso be influenced by
categorical/discrete variables, such as the precursor choice’**** and
presence of seed crystals. These discrete variables present acompelling
opportunity for future work in ML for synthesis modeling—for example,
discrete diffusion®, autoregressive models**’ and reinforcement
learning®®®' for sampling discrete synthesis parameters.

For diffusion models, the inference speed is slower than for other
generative approaches owing to sequential denoising. However, as
the bottleneck of materials synthesis is experimental synthesis (for
example, reaction time of weeks), inference speed is not a significant
problem. Even if sampling speed becomes a bottleneck, techniques
such as denoising diffusion implicit model sampling®® can trade off
sampling quality for faster sampling. Flow-matching models® could
be an alternative to balance quality and speed. Notably, training Diff-
Synrequires optimizing hyperparameters for classifier-free guidance
such as pcong and w as shown in Supplementary Fig. 6, which may be
challenging if computeis limited.

The successful synthesis of UFI enabled by DiffSyn exemplifies
the potential of our approach to guide experimental zeolite synthesis.
However, a comprehensive validation of DiffSyn would ideally also
demonstrate that recipes substantially diverging from the generated
ones fail to yield the target phase; such an evaluation is beyond the
scope of this study and is reserved for future work. We hypothesize
that diffusion models could be applied to other materials systems,
particularly when data are plentiful. This approach signifies a shift
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from regression to generative models for materials synthesis, where the
latter is needed to effectively model one-to-many structure-synthesis
relationships. This work has enabled the prediction of probable and
diverse synthesis pathways of microporous materials, signifying astep
toward bridging computational materials design (‘what’ to synthesize)
and synthesis planning (‘how’ to synthesize).

Methods

Zeolite and OSDA representations

Zeolite. We adopt two different approaches to encoding the zeolite
structure. First, invariant features (for example, ring sizes, largest
included sphere) are retrieved from the International Zeolite Associa-
tion (IZA) database®*. These features serve asinputs into a multi-layer
perceptron (MLP) encoder. Second, an EGNN®*° encodes the zeolite
asagraph (Supplementary Section D).

OSDA. We optimized each OSDA in the gas phase with the MMFF94 force
field from RDKit-generated conformers®. Each OSDA is featurized using
its physicochemical descriptors (for example, molecular volume and
two-dimensional shape descriptors) averaged over all conformers?*%,
The OSDA features are defined in Supplementary Table 3. The zeolite
embedding is concatenated with the OSDA embedding and further
encoded using the fusion encoder before the jointembedding guides
the reverse diffusion process to generate synthesis routes (Fig. 1b).
Model performance across the denoising diffusion trajectory can be
foundinSupplementary Fig. 7.

Denoising diffusion probabilistic models

Denoising diffusion probabilistic models®® are generative models that
use adiffusion process to generate data by reversing a forward process
thatincrementally adds noise to the data. The forward process gradu-
ally corruptsthe datax,into anoisy samplex,by adding Gaussian noise
inaMarkov chain:

qelxe1) = N ) 1= Bexey, Bel) (2

where ¢ is the forward/noising distribution, S, is the variance at
timestep ¢, and /is the identity matrix. It is often useful to sample x,
directly fromx,:

qx|x0) = N &Xo, (1 — &) ©)

wherea, =1-8, a, = nglas andsisthediffusion time step. The gene-
rative process learns to reverse this corruption step by step (Fig. 1b),
sampling from a distribution py(x,_;|x;) parameterized by a neural
network with parameters 6. This reverse process can also be repre-
sented as a Gaussian distribution

p@(xt—l |xt) = N(Xt—l;ﬂﬂ(xts t)? Ze(xt’ t)) (4)

Here, we learn the mean while fixing the variance as

b —€p(Xe, 1), Zo(xr, ) = Bl ©)

A

1
Ho(Xe, ) = — (X, —

\/7[

where €4(x;, t) is aneural network trained to predict the noise €. In this
work, we use a U-Net* (Fig. 1c). The training objective is to minimize a
variational bound E., ([l € - €s(xs ) I’1, which results in the
diffusion model

)
Pato) = f pcp) T PoCeesbeodx, 7 ©

t=1

Chemically guided diffusion model
In standard guided diffusion models, a classifier is used to guide the
generation process by adjusting the score to steer the model toward

specific target classes. In contrast, classifier-free guidance? eliminates
the need for a separate classifier by conditioning the diffusion model
directly on the desired attributes. During training, the score function
Spistrained both with and without conditioning c using anull token .
This training is done by randomly setting c to the unconditional null
token @ with some probability p,,.one- Sampling is then performed
using alinear combination of the conditional and unconditional score
estimates:

So(x;, t,0) = (1 + w)sg(xe, t, ) — wsg(Xe, t, D) 7)

where crefersto the chemical guidance from zeolite and OSDA embed-
dings showninFig.1b, and wis the strength of the chemical guidance.
Supplementary Section D contains the implementation details.

Model evaluation

Metrics. For each test zeolite—-OSDA system, we sample 1,000 synthesis
routes using the model and compute the following metrics with refer-
ence to unseen synthesis routes reported in literature. Wasserstein
distance measures the distance between two probability distributions
by finding the minimum cost to move probability mass from one dis-
tribution to another®’. The Wasserstein metric captures differences
inboth the location and the shape of distributions (including spread
and the presence of multiple modes). Although Kullback-Leibler diver-
gence may be used, the Wasserstein distance is chosen as it fulfills all
requirements of a metric: non-negativity, identity of indiscernibles,
symmetry and triangle inequality. Moreover, a significant drawback
of Kullback-Leibler divergence is its behavior with distributions that
donothave overlapping support. Ifthereis any point where one distri-
bution has a zero probability and the other has a non-zero probability,
the Kullback-Leibler divergence can become infinite or undefined.
Wasserstein distance, in contrast, provides a meaningful and finite
distance even for distributions with non-overlapping supports. Was-
serstein distance has been widely adopted in generative modeling
(for example, Wasserstein GANs” use a form of Wasserstein distance)
because it provides asmooth, sensitive measure of distributional dif-
ferences. Smallimprovements in how well the model captures tails or
secondary modes are reflected by alower Wasserstein distance, guid-
ing us during model development to favor settings that capture the
full distribution. In addition, inspired by ref. 71, we use two coverage
metrics, COV-R (recall) and COV-P (precision), to measure the similar-
ity between sets of generated and literature-reported synthesis for
each zeolite-OSDA system. Intuitively, COV-R measures the fraction
of literature synthesis routes being correctly predicted, and COV-P
measures the fraction of generated synthesis routes being probable.
COV-Flis computed as the harmonic mean of COV-R and COV-P. Refer
to Supplementary Section C for adetailed justification of the metrics.

Baselines. A random dummy baseline corresponds to picking a ran-
dom point in synthesis space. Reference 16 proposed a deterministic
regression-based approach using AMD for zeolite structural featuriza-
tion for a synthesis prediction task'®. BNNs* extend standard neural
networks by incorporating Bayesian inference by treating network
weights as probability distributions, enabling a distribution of out-
puts. We implement a classical generative approach, GMM**’%, which
models data probabilistically asasum of Gaussians (each with its mean
and covariance). We also implement deep generative baselines: con-
ditional VAE"**7, conditional GAN* and conditional NF. For NF, we
use real-valued non-volume preserving (ReaINVP) transformations™.

Experimental methods

Synthesis of UFI. We used colloidal silica (Ludox AS-40, 40 wt%,
Aldrich), aluminum hydroxide (AI(OH),, SPI Pharmacy), sodium hydro-
xide (NaOH, 50%, Aldrich), with K222 (98%, Ambeed) and tetrameth-
ylammonium hydroxide pentahydrate (TMAOH-5H,0, 97%, Aldrich)
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as OSDAs to synthesize UFI. The OSDAs were selected by the method
describedinref. 48. The synthesis mixture had the molar composition
1.0 Si0,, 0.033 ALO,, 0.1 Na,0, 15 H,0, 0.15 K222, 0.025 TMA,O. We
dissolved 0.021 g AI(OH), in a solution containing 0.64 gNaOH, 6.9 g
deionized water and 0.36 g TMAOH-5H,0. After the solution became
clear, 6 gLudox AS-40 and 2.31 gKryptofix 222 were added. Also, 4 wt%
H-UFI seed material was included. The mixture was stirred and aged
at room temperature for 24 h, then transferred to Teflon-lined 23-ml
autoclaves and heated at 175 °C under dynamic conditions for 7 days.
Theresulting zeolites were recovered by centrifugation (12,000 rpm,
10 min), washed with deionized water 3 times and dried overnight at
110 °C.Samples were then heated at aramp rate of 1°C mint0 580 °Cin
flowing dry air (100 ml g™ of zeolite) for 6 h to remove OSDA molecules.

X-ray diffraction. Zeolite crystal structures were analyzed using pow-
der X-ray diffraction with a Bruker D8 diffractometer (Cu Ka radiation,
A=1.5418 A, 40 kV, 40 mA). Diffraction patterns were recorded over a
20range of 5-45°, with an angular step size of 0.02° and ascanning rate
of 4° min™ to confirm phase purity.

Scanning electron microscopy. The morphology of the calcined
zeolite crystals was observed using a Zeiss Merlin High-Resolution
scanning electron microscope. Zeolite samples were prepared as fine
powders and mounted on carbon tape. Images were collected at 2.0 kV,
100 pA and aworking distance of 6.7 mmusing the HE-SE2 detector in
High-Resolution Column mode.

Elemental analysis. The elemental composition of silicon and alu-
minum (Si/Al,cp) of synthesized UFI zeolites was determined using
inductively coupled plasma atomic emission spectroscopy (Agilent
5100). Si/Al,cp is an important property of zeolites as a high Si/Al,c, is
correlated with high thermal stability*'. Samples (10 mg) were digested
in100 plhydrofluoricacid (48 wt%, Sigma-Aldrich) for 24 h, followed by
dilutionto 10 gwith 2 wt% aqueous nitric acid (GFS Chemicals). Calibra-
tion curves were constructed with 6-point standards using ICP solutions
of1,000 ppm Si, Aland Nain 2 wt% HNO, (Sigma-Aldrich, TraceCERT).

DFT methods
DFT calculations were conducted using the ORCA package (v5.0.4
Forall calculations, the wB97X-D hybrid functional”®”” was used along
with the def2 triple-{basis set with polarization (def2-TZVP)’®. During
electronic optimization, wavefunctions were converged when energy
changes were less than 107 Ha. Geometry optimizations were per-
formed until the energy varied by less than 5x 10" Haand the forces on
all atoms were below 3 x10™* Ha bohr™, adhering to the default ORCA
optimization protocol. Where indicated, the SMD solvation model was
appliedto estimate solvation effects on the energies of each structure,
using water as the solvent withadielectric constant (¢) of 80.4 (ref. 79).
Binding energies were calculated relative to an isolated ion in
vacuum and an empty Al-substituted composite building units (CBUs):

)74, 75

AE, = F[M - CBU] — E[]M™*] — F[CBU""] 8)

where E[M - CBU] represents the energy of the metal ion positioned
within the Al-substituted CBU, E[M™]is the energy of theisolated ion,
and E[CBU" Jis the energy of the empty Al-substituted CBU containing
nAlatoms. When CBUs offered multiple potential single Al positions or
several configurations of two Al atoms, we selected the AE, correspond-
ing to the most stable Al arrangement, as this stability likely reflects
the thermodynamically preferred configuration. Given adequate syn-
thesis time, Al atoms tend to occupy stable framework positions, as
demonstrated in recent CHA studies®°. Atoms within CBUs, including
terminal hydroxyl groups, were kept fixed during calculations. Energies
for empty, Al-substituted CBUs and isolated ions (in vacuum or with
implicit solvation) were determined via single-point calculations in
ORCA with appropriate charges.

The optimization of the metal-docked ion within the CBU allowed
movement of the ion but maintained fixed positions for the CBU atoms,
replicating the constraints imposed by a crystal environment where
surrounding framework atoms would restrict movement; uncon-
strained optimization could lead to significant atomic displacements
inthese molecular forms. This study aims to understand how theseions
influence specific CBU structures, given that the OSDA likely directs
[ta cage formation in these zeolites. Thus, CBU atoms were fixed to
preserve a shape close to their zeolite-based structures, and binding
energies were calculated with and without solvation effects from water.

Zeolite crystal structures for materials synthesized in this work
were obtained from the IZA database®. Molecular models of individual
CBUs for each synthesized framework were extracted by isolating
them from their crystalline counterparts, with frameworks and corre-
sponding CBUs. CBUs were derived from selected zeolite frameworks,
as listed in the IZA database. Terminal SiOH groups were added to
undercoordinated Si atoms to maintain tetrahedral coordination.
These SiOH groups were oriented with Si-O-Hbond angles of 180° to
minimize hydrogen-bondinginteractions betweennearby SiOH groups
(Supplementary Fig.19).

Data availability
TheZeoSyn dataset is available on figshare via https://doi.org/10.6084/
m9.figshare.30632942 (ref. 81). Source datais available with this paper.

Code availability

The code for preprocessing the ZeoSyn dataset, training and evaluat-
ing the diffusion models is available at https://github.com/eltonpan/
zeosyn_gen and on Zenodo®.
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