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DiffSyn: a generative diffusion approach to 
materials synthesis planning
 

Elton Pan    1, Soonhyoung Kwon2, Sulin Liu1, Mingrou Xie    2, 
Alexander J. Hoffman    1, Yifei Duan1, Thorben Prein3, Killian Sheriff    1, 
Yuriy Roman-Leshkov2, Manuel Moliner    4, Rafael Gomez-Bombarelli    1 & 
Elsa A. Olivetti    1 

The synthesis of crystalline materials, such as zeolites, remains a notable 
challenge owing to a high-dimensional synthesis space, intricate 
structure–synthesis relationships and time-consuming experiments. Here, 
considering the ‘one-to-many’ relationship between structure and synthesis, 
we propose DiffSyn, a generative diffusion model trained on over 23,000 
synthesis recipes that span 50 years of literature. DiffSyn generates probable 
synthesis routes conditioned on a desired zeolite structure and an organic 
template. DiffSyn a chieves state-of-the-art performance by capturing 
the multi-modal nature of structure–synthesis relationships. We apply 
Diffsny to differentiate among competing phases and generate optimal 
synthesis routes. As a proof of concept, we synthesize a UFI material using 
DiffSyn-generated synthesis routes. These routes, rationalized by density 
functional theory binding energies, resulted in the successful synthesis  
of a UFI material with a high Si/AlICP of 19.0, which is expected to improve 
thermal stability.

Materials discovery lays the foundation for modern technologies, from 
catalysis to electronics1. Recent large-scale computational searches of 
chemical composition and structures2–5 have uncovered millions of 
potentially stable, synthesizable materials (‘what’ to synthesize)2,6–8. 
However, finding viable synthesis routes remains a bottleneck in materi-
als discovery (‘how’ to synthesize)9–12 because there are many synthe-
sis parameters (composition, conditions and so on) that interact in 
complex ways. Moreover, the compute required for atomistic simu-
lations scales poorly with system size, precluding accurate modeling 
of the underlying physical phenomena in complex materials (that is, 
thermodynamics and kinetics)13. Consequently, there is continued 
interest in machine learning (ML) approaches to directly learn from 
experimental synthesis data to predict materials synthesis parameters 
at lower computational cost10,11,14.

Materials synthesis prediction presents a unique challenge for ML 
for several reasons. First, structure–synthesis relationships are ‘one- 
to-many’—that is, a single target structure may form through multiple 

possible synthesis recipes. Second, the inverse relationship (synthesis– 
structure) is also one-to-many—that is, a single recipe may result in 
the formation of a mixture of products (competing phases) owing 
to the complex interplay of thermodynamic and kinetic pathways13. 
Capturing this phase competition is crucial to selectively synthesize 
single-phase materials instead of mixtures. Third, complex nonlinear 
interactions exist between synthesis parameters, such as tempera-
ture and time11 (Supplementary Fig. 10), requiring approaches that 
model joint probabilities across multiple synthesis parameters. Predic-
tions must capture relationships among variables to make trade-offs 
between parameters leveraging physical information about materials 
synthesis (for example, crystallization kinetics).

Previous ML approaches to predict synthesis have predomi-
nantly used regression approaches11,15–17, which deterministically 
map a representation (for example, composition10,11, structural 
features16, graphs15) of a material to its synthesis parameters. These 
approaches are limited because the deterministic mapping is 
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iteratively denoises using a U-Net32 conditioned on chemical guidance 
(‘Representation learning of materials’ section) via classifier-free guid-
ance (Fig. 1c). After T timesteps of denoising, the model generates syn-
thesis routes for a desired structure. This denoising process can be seen 
in the improvement of generation metrics (for example, Wasserstein 
distance and COV-P, defined in ‘Metrics’ in Methods) throughout the 
reverse diffusion process (Supplementary Fig. 7). We train Diffsyn on 
the ZeoSyn dataset14, which consists of 23,961 synthesis recipes, 233 
zeolite topologies and 921 OSDAs (Supplementary Section A).

Representation learning of materials. DiffSyn integrates a dual-encoder 
approach consisting of separate encoders (Enczeo and EncOSDA) for the 
zeolite structure and OSDA, respectively (Fig. 1b). We use two representa-
tions of the zeolite structure: invariant geometric features and an equiv-
ariant graph neural network (EGNN). The invariant geometric features 
are physical descriptors (for example, pore volume) calculated from the 
zeolite structure using the Zeo++ package. The EGNN encoder directly 
learns a representation from a graph of the zeolite crystal structure (Sup-
plementary Section D). For the OSDA, we perform molecular geometry 
relaxation and calculate its physicochemical descriptors (for example, 
volume and shape) (‘Zeolite and OSDA representations’ in Methods).

Figure 1d shows that the respective encoders learn smooth and 
continuous latent spaces with respect to the properties of zeolites and 
OSDAs. A comprehensive set of properties plotted in embedding space 
can be found in Supplementary Figs. 8 and 9, indicating chemically 
meaningful representations of zeolites and OSDAs. These represen-
tations are concatenated before a fusion encoder (Encfusion) learns a 
joint representation. We refer to the joint representation as chemical 
guidance (Fig. 1b). Chemically meaningful representations are pivotal 
in steering the diffusion model to generate realistic synthesis routes 
for a desired materials structure. This representation enables DiffSyn 
to generate synthesis parameters that reflect synthesis routes unseen 
in training, which have been reported in the literature (Fig. 2e).

Influence of chemical guidance in diffusion model. Classifier-free 
guidance22 is a critical component of DiffSyn, where the chemical guid-
ance steers the generation process by reweighing the unconditional 
score function with a conditional score function (‘Chemically guided 
diffusion model’ in Methods). We probe the influence of two key hyper-
parameters related to classifier-free guidance: the probability of the 
chemical guidance being omitted in score estimation during training 
(puncond) and the guidance strength that weighs the conditional score 
relative to the unconditional score during inference (w; equation (7)).

Higher values of puncond and w amplify the conditional score, 
making the sampling process more dependent on the chemical guid-
ance. This increased dependence on chemical guidance can result in 
over-constrained outputs, reducing diversity and potentially missing 
valid synthesis routes. Lower values of puncond and w reduce the influ-
ence of the chemical guidance, potentially decreasing specificity and 
generating synthesis recipes that are less tailored to the target struc-
ture, but improving the diversity of recipes. We find that the balance 
between diversity and quality of generated synthesis routes occurs at 
puncond = 0.1 and w = 1.0 (Supplementary Fig. 6).

Modeling structure–synthesis relationships
We evaluate DiffSyn against a suite of previously published approaches 
in materials synthesis planning. These baseline models fall into three 
categories: regression-based approaches (average minimum distance 
(AMD)16 and Bayesian neural networks (BNN)33); classical generative 
models (Gaussian mixture model (GMM)34); and deep generative mod-
els (conditional generative adversarial network (GAN)35, normalizing 
flow (NF)36 and variational autoencoder (VAE)11,19). More information 
about these baselines is included in ‘Baselines’ in Methods. We com-
pare approaches using Wasserstein distance (lower is better), which 
measures the distance between the generated and ground-truth 

incompatible with the one-to-many nature of structure–synthesis rela-
tionships and assume independence between synthesis parameters18,19 
(Supplementary Fig. 4).

These factors limit the predictive accuracy of regression 
approaches and motivate a shift to generative models, which can sam-
ple a complex distribution that accounts for the nonlinear interactions 
between parameters in high-dimensional synthesis space.

To address these challenges, we introduce a diffusion model for 
materials synthesis. Diffusion models are a powerful class of generative 
models that have been demonstrated to generate novel, high-quality 
images conditioned on text20,21. Diffusion models can be guided at each 
step of the denoising process toward a specific objective (for exam-
ple, target material)22,23. Unlike generative adversarial networks that 
suffer from mode collapse24, diffusion models can generate diverse 
outputs because they are trained to denoise data (for example, a syn-
thesis route) that have been corrupted with noise. Other generative 
approaches, namely, variational autoencoders and normalizing flows, 
have limited expressivity due to one-step decoding and affine invertible 
layers, respectively. In contrast, the iterative denoising process renders  
diffusion models highly expressive, which enables high sample quality23.  
This high expressivity may enable diffusion models to capture bounda-
ries in synthesis space between competing phases.

We propose DiffSyn, a diffusion approach to materials synthesis  
prediction, and demonstrate it on zeolites, which are crystalline, 
microporous materials with applications in catalysis, adsorption and 
ion exchange. Zeolite synthesis is challenging owing to its high dimen-
sionality (Fig. 1a), with numerous variables influencing the synthesis 
outcome (Supplementary Fig. 1). Moreover, multiple modes of valid 
synthesis routes exist for a given structure (Supplementary Fig. 5). 
Progress in zeolite synthesis has focused on trial-and-error experi-
ments guided by domain heuristics25. We leverage guided diffusion 
models for materials synthesis prediction, which show state-of-the-art 
performance compared with regression-based and other deep gen-
erative approaches. We show that the performance of DiffSyn arises 
from its ability to capture the one-to-many and multi-modal nature 
of structure–synthesis relationship in materials. We experimen-
tally validate our approach by synthesizing the UFI zeolite based on 
DiffSyn-generated synthesis routes. We rationalize these routes using 
density functional theory (DFT) calculations of inorganic cations that 
guide UFI synthesis. Together, these results indicate that DiffSyn learns 
the underlying chemistry that influences synthesis outcomes implicitly 
from published synthesis recipes.

Results
DiffSyn framework for materials synthesis planning
Chemically guided diffusion model. Diffsyn leverages a chemically 
guided diffusion model for predicting materials synthesis routes with 
the target zeolite structure czeo and the organic structure-directing agent 
(OSDA) cOSDA as inputs (Fig. 1b). An OSDA is an organic molecule that tem-
plates the zeolite’s pores (Supplementary Fig. 1e), directing the synthe-
sis toward the formation of a specific structure. Previous work has shown 
that the optimal OSDA to synthesize a given structure can be identified 
from atomistic simulations26–31. The goal is to learn p(xcomp, xcond∣czeo, cOSDA) 
to generate an ensemble of synthesis routes consisting of gel composi-
tions {xcomp} and synthesis conditions {xcond} given a target structure and 
OSDA, as shown in Supplementary Fig. 2 (also known as synthesis param-
eters, defined in Supplementary Table 1). Supplementary Fig. 4 shows 
an example of the predicted versus ground-truth synthesis param-
eters (green points). The prediction of synthesis parameters is an 
under-determined problem with multiple possible valid synthesis 
routes {xcomp, xcond} for each czeo and cOSDA.

During training, the forward diffusion process (red arrow in Fig. 1b) 
adds Gaussian noise to xcomp and xcond, progressively mapping them to 
a Gaussian distribution (noise). During inference, the reverse diffu-
sion process (green arrow in Fig. 1b) starts from Gaussian noise and 
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distributions of literature-reported synthesis parameters for unseen 
zeolite–OSDA systems. In addition, we propose the coverage metric 
COV-F1. The model should maximize both COV-P (precision) and COV-R 
(recall) simultaneously. Therefore, their harmonic mean (COV-F1) meas-
ures the degree of generated recipes being both realistic and diverse 
(ranges from 0 to 1, higher is better). Detailed explanations of these 
metrics are in ‘Metrics’ in Methods and Supplementary Section C.

Generative approaches better model structure–synthesis relation-
ships. Wasserstein distances show that deep generative models such 
as GAN, NF, VAE and DiffSyn outperform the classical approaches, 
with DiffSyn outperforming the next best baseline (VAE) by over 25%. 
Classical generative approaches like GMM do not perform much better 
than a random baseline (Fig. 2a) while a probabilistic regression model 
(BNN) performs better than GMM.

The COV-F1 of 12 synthesis parameters are shown in Fig. 2b. The 
models perform better on synthesis parameters related to heteroatoms 

(Si/Al, Al/P, Si/Ge, Si/B), cations (Na+/T, K+/T) and anions (F−/T, OH−/T), 
where T refers to the sum of all heteroatoms. However, they struggle 
to predict crystallization time, which could be attributed to anthropo-
genic factors; crystallization times are subject to human bias, where 
experimentalists test and report ‘rounded’ numbers37. This bias results 
in the ground-true time distribution peaking at specific intervals, hence 
rendering time prediction more challenging.

Deep generative approaches (VAE, NF and DiffSyn) outperform 
regression-based approaches (AMD and BNN). We hypothesize that 
generative models have superior performance owing to better recall 
(higher COV-R; Supplementary Fig. 3). Meanwhile, DiffSyne outper-
forms other deep generative models owing to higher precision (higher 
COV-P; Supplementary Fig. 3), where the diffusion model generates 
higher-quality synthesis routes. Interestingly, DiffSyn achieves the low-
est mean absolute error for 10 out of 12 synthesis parameters (Fig. 2c), 
despite not being explicitly trained on the mean absolute error objec-
tive like the regression-based models.
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Fig. 1 | A diffusion approach to materials synthesis planning. a, Materials, such 
as zeolites, often have an one-to-many structure–synthesis relationship, where a 
structure czeo can be synthesized via multiple possible synthesis routes in a 
high-dimensional synthesis space (compositions {xcomp} and conditions {xcond}). 
b, Overview of DiffSyn: given a desired zeolite structure czeo and an OSDA cOSDA, 
the model pθ(xcomp, xcond∣czeo, cOSDA) generates an ensemble of synthesis routes 
{x̃comp} and {x̃cond} via reverse diffusion (green arrow) that matches ground-
truth synthesis routes {xcomp}, accurately capturing the aforementioned 
one-to-many structure–synthesis relationship with which previous methods 
struggle. Note: only {x̃comp} is shown. c, Model architecture: two separate 

encoders embed the zeolite material czeo and organic template cOSDA before their 
latent representations are concatenated. The joint representation steers the 
generation process from noise (xcomp,T, xcond,T ∼ 𝒩𝒩𝒩0, I)) to realistic synthesis 
routes specific to the zeolite and OSDA via classifier-free guidance by learning 
μθ𝒩xt, t, czeo, cOSDA)=

1
√αt

𝒩xt −
βt

√1−ᾱt
ϵθ𝒩xt, t, czeo, cOSDA)) where ϵθ𝒩⋅) is a 

conditional U-Net trained to predict the noise at time t (‘Denoising diffusion 
probabilistic models’ in Methods). Note that xcomp and xcond are jointly noised and 
denoised. d, PCA of learned representations of zeolites and OSDAs. The color 
bar refers to a specific physical property (as shown in each title).
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Rationalizing the superior performance of generative approaches. 
For a given target material, there are a range of possible values for 
each synthesis parameter (for example, temperature) at which a 
material can be synthesized (that is, synthesis window). We show 

the distribution of crystallization times from published syntheses 
(gray, Fig. 2d).

This distribution of synthesis parameters renders struc-
ture–synthesis relationship one-to-many instead of one-to-one. 
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Fig. 2 | Performance in materials synthesis prediction task. a, Wasserstein 
distance (lower is better) between generated and literature synthesis routes. Metric 
is averaged across all test systems. Error bars correspond to standard deviation 
across three independent training runs. b, COV-F1 (higher is better, ranging from  
0 to 1) of individual synthesis parameters (gel composition and conditions).  
c, Mean absolute error between the means of distribution of generated and literature 
synthesis parameters. d, Distributions of predicted and true synthesis parameters 

across various different modeling approaches. AMD (dark blue) is regression-
based (outputs deterministic, single-point prediction), while GAN (light blue) 
suffers from mode collapse. NF and VAE output distributions do not match the 
ground truth (gray). DiffSyn (red) accurately captures the true distribution (gray) 
of the synthesis parameters. e, DiffSyn-generated synthesis routes (orange) and 
distribution of synthesis routes reported in literature (blue). Synthesis parameters 
are aggregated across all unseen zeolite–OSDA systems.
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Regression-based AMD is deterministic, and thus outputs a point 
prediction that comes from a weighted average of the distribution 
(Fig. 2d). Generative models like GAN also output a point prediction as 
they often suffer from mode collapse24. Although generative models 
such as NF and VAE address mode collapse, they lack expressivity and 
fail to accurately capture the ground-truth literature distribution. In 
contrast, DiffSyn captures the ground-truth distribution. Furthermore, 
we compare the predicted and true joint distributions of multiple 
synthesis parameters for all of these approaches for the AEL zeolite 
(Supplementary Fig. 4). Only deep generative approaches (NF, VAE and 
DiffSyn) capture the ground-truth joint distribution of crystallization 
temperatures and times for the AEL structure, with DiffSyn most accu-
rately capturing that joint distribution. DiffSyn captures most of the 
ground-truth points, including some outliers; however, DiffSyn fails to 
predict points in a minor mode (bottom right of guided diffusion panel 
in Supplementary Fig. 4), which are extreme outliers (for example, low 
crystallization temperature and long crystallization time).

The distribution of synthesis parameters is also multi-modal. 
We plot the principal components of all synthesis parameters for 
the aforementioned AEL structure in Supplementary Fig. 5, which 
shows that the true distribution has multiple modes—two in this case. 
Regression-based models (AMD, BNN) predict only one of the modes. 
GMM predicts synthesis routes that are far out of distribution. GAN 
suffers from mode collapse to one of the modes. NF and VAE capture 
both modes, but also generate a large number of false positives. This 
behavior arises from the low expressivity of VAEs and NFs, which use 
one-step decoding and affine invertible layers, respectively. In contrast, 
DiffSyn accurately predicts the true distribution because it generates 
high-quality and diverse outputs. Consequently, DiffSyn generates 
synthesis routes that overlap with unseen literature-reported synthesis 
parameters (Fig. 2e). For a discussion on diversity of generated samples, 
refer to Supplementary Section B.

Learning chemically meaningful relationships. We perform an 
unsupervised, hierarchical clustering of zeolite structures based on 
their learned representations (Fig. 3a), and observe distinct clusters 
according to their corresponding structural features (for example, 
number of channels, largest free sphere diameter). The clustering 
indicates that the zeolite encoder has learned to separate structurally 
distinct materials. Consequently, the chemical guidance (Fig. 1b), which 
requires learning good representations of the zeolite and OSDA, guides 
the generative process toward the desired target material.

Given that DiffSynt learns the joint distribution of multiple syn-
thesis parameters, we inspect two synthesis parameters (crystalliza-
tion temperature and time) in Supplementary Fig. 10 for two unseen 
zeolite–OSDA systems. An inverse relationship is observed between 
generated temperatures and times. This observation aligns well with 
the Arrhenius equation

k = Ae
−Ea
RT , (1)

where crystallization time (related to rate k) is inversely related to tem-
perature T. A, Ea and R refer to Arrhenius constant, activation energy 
and gas constant, respectively. In addition, the generated H2O/T (here, 
T refers to tetrahedral framework atoms or T-atoms, rather than tem-
perature) and framework density (FDSi) of the zeolite structure correlate 

positively (Spearman’s coefficient 0.673; Supplementary Fig. 11). This 
finding agrees with Villaescusa’s rule38, which states that denser phases 
(higher FDSi) are favored at lower concentrations of T-atoms (higher 
H2O/T), showing that DiffSyn has learned domain-specific rules in mate-
rials synthesis. The model predictions also follow the thermodynamics 
of zeolite formation, where the generated crystallization temperature 
and framework density (FDSi) of the zeolite structure positively corre-
late (Spearman’s coefficient 0.931; Supplementary Fig. 12). This find-
ing agrees with the thermodynamic argument from Ostwald’s rule of 
stages, which states that higher temperatures enable the synthesis to 
overcome the activation barrier to form more stable structures with 
higher framework densities14,39.

Case studies
We compare DiffSyn-generated synthesis routes to literature-reported 
synthesis routes for diverse zeolite–OSDA systems that are syntheti-
cally interesting and industrially useful. The generated routes for these 
unseen systems (MWW, BEC and a pair of competing phases—FAU 
and LTA) provide evidence of DiffSyn learning meaningful synthesis– 
structure relationships (Fig. 3). Other systems (MTT and ATO) are ana-
lyzed in Supplementary Figs. 13 and 14, respectively.

We first consider the MWW phase, a unique two-dimensional 
structure with 10-membered rings and large cavities, with applications 
including isomerization40 and aromatization41. The generated OH−/T, 
K+/T, H2O/T, SDA/T, and crystallization temperature and time overlap 
substantially with ground-truth synthesis parameters (Fig. 3b). We also 
test the model on a significantly different structure: BEC, a large-pore 
zeolite. BEC has a three-dimensional pore topology with intersecting 
12-membered ring channels, with applications in isomerization42 and 
epoxidation43. DiffSyn-generated synthesis parameters closely agree  
with synthesis parameters reported in the literature, particularly  
Si/Ge, F−/T, and crystallization temperature and time (Fig. 3c). This pre-
diction aligns with reports that Ge and F− stabilize the double four ring 
(d4r) composite building unit of the BEC structure during synthesis44. 
This finding suggests that DiffSyn learns how particular heteroatoms 
or synthesis conditions favor the formation of specific building units 
within zeolites. However, the generated synthesis parameters do not 
always fully recall the ground truth for BEC synthesis. For example, the 
model fails to predict the full range of possible SDA/T values that have 
been identified in past recipes (SDA/T = 0.15–0.25; Fig. 3c).

Typically, materials synthesis aims to produce a single framework; 
however, if two phases during synthesis compete, some recipes result 
in two or more phases. Here we applied DiffSyn to predict OSDA-free 
synthesis routes for the FAU and LTA zeolites45. Synthesis routes gener-
ated by DiffSyn align closely with literature-reported recipes (Fig. 3d). 
Notably, DiffSyn accurately predicts the phase boundary region (green) 
between FAU and LTA in OSDA-free conditions, delineating the synthe-
sis space under which the competing phases form. This result shows 
that DiffSyn accurately captures not only the forward relationship 
(structure–synthesis) but also the decision boundaries of the inverse 
relationship (synthesis–structure), hence demonstrating its poten-
tial to enable phase-selective synthesis. Similarly, we demonstrate 
this capability for another pair of competing phases (ERI and KFI) in 
Supplementary Fig. 15. Taken together, these case studies illustrate 
DiffSyn’s ability to generalize to a variety of zeolite frameworks and 
their corresponding chemistries.

Fig. 3 | Case studies on unseen materials systems. a, Hierarchical clustering of 
zeolite structures. Splits are obtained via agglomerative hierarchical clustering 
of learned zeolite representations. Each structure (with a three-letter code as 
its name) is colored by its number of channels (NC) in purple, and its largest 
free sphere (LFS) in orange. This leads to several distinct clusters: (1) high NC, 
low LFS; (2) low NC, low + high LFS; (3) high NC, low + high LFS; (4) low NC, high 
LFS; (5) low + high NC, high LFS; (6) high NC, high LFS. b,c, Generated synthesis 
routes for unseen materials systems. b, MWW structure (in cluster 5) with 

N,N,N-trimethylhexan-1-aminium as the OSDA. c, BEC structure (in cluster 4)  
with pentane-1,5-diyl-bis(trimethylammonium) as the OSDA. Orange heatmaps  
refer to synthesis routes generated by DiffSyn, while blue points refer to 
literature-reported synthesis routes. d, Competing phases FAU and LTA 
(in cluster 5). Heatmaps refer to generated routes, while points refer to 
literature-reported synthesis routes. Notice that the model accurately  
predicts the phase boundary (green shaded region) between FAU and LTA.
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Generating optimal synthesis routes
We use DiffSyn to generate more feasible synthesis routes (Fig. 4a), 
by evaluating and ranking the generated synthesis routes based on 
precursor cost and crystallization time (Supplementary Table 2) using 
methods reported in ref. 46. We apply this approach to the synthesis of 
CHA, using trimethyladamantyl ammonium (TMAda) as the OSDA47, 
and generate an ensemble of synthesis routes with corresponding pre-
cursor costs and crystallization times (Fig. 4b). Among the generated 
routes, there are Pareto-optimal routes that trade off low precursor cost 
and fast synthesis time. These two objectives are optimal in different 
regions in the synthesis space—the OSDAs that produce CHA crystals 
faster tend to be more expensive (Supplementary Fig. 16). Some of these 
Pareto-optimal routes generated by DiffSyn have lower crystallization 
time and lower precursor cost compared with the 20 least expensive 
synthesis routes reported in the literature.

We inspect the evolution of synthesis parameters on the Pareto 
front. Notably, Al/Si and NaOH/Si remain relatively constant (Fig. 4c). 
In contrast, SDA/Si decreases as we prioritize lower cost over faster 
reaction as the OSDA typically drives precursor cost. The distributions 
of generated synthesis parameters also change along the Pareto front 
(Fig. 4d). This analysis reveals that increasing the crystallization tem-
perature from 140 °C to 160 °C while simultaneously increasing NaOH/
Si and OSDA/Si would favor faster reaction (Fig. 4d). This assessment 
shows how varying the joint distributions of synthesis parameters can 
accelerate synthesis (synthesizing desired structure in shorter time at 
higher temperature).

Experimental and DFT validation
We validate DiffSyn by experimentally synthesizing a UFI zeolite from 
recipes generated by our model with Kryptofix 222 (K222) as the OSDA48 
(Fig. 5). UFI has potential applications in industrially relevant reac-
tions (for example, selective catalytic reduction of NOx (ref. 49)). The 

UFI-K222 system has not been reported in previous literature and is not 
present in the training dataset, and hence serves as a test of DiffSyn’s 
out-of-distribution generalization.

Figure 5a shows the PCA of 1,000 DiffSyn-generated syn-
thesis routes for UFI (orange), which constitutes a subspace of 
literature-reported synthesis routes for all zeolites (gray). We retrieve 
the k-nearest neighbors (k = 5) of generated UFI synthesis from the 
literature-reported synthesis routes (Supplementary Fig. 17). Among 
the retrieved syntheses, the top-two most similar frameworks (PAU 
and RHO) share a common lta composite building unit (CBU) with UFI 
(Supplementary Fig. 18). Beyond this, the remaining frameworks do 
not share any common CBUs with UFI. This observation is supported 
by a previous work50 reporting that the majority of competing phases 
do not share any CBUs, suggesting that structure–synthesis relation-
ships are complex and cannot be rationalized with building units alone.

We visualize individual synthesis parameters of generated routes 
in Fig. 5e (orange histograms), including gel compositions (Si/Al,  
Ge/Si, B/Si, Na+/Si, K+/Si, H2O/Si, F−/Si) and reaction conditions (crystal-
lization temperature and time). For inorganic cations, DiffSyn recom-
mends high Na+/Si and low K+/Si for UFI synthesis (Fig. 5e). We 
rationalize this observation by calculating binding energies (ΔEb) of 
inorganic cations (Na+ and K+) in building units of UFI (wbc and rth) 
using DFT as shown in Fig. 5b (details in ‘DFT methods’ in Methods). 
The calculations reveal that Na+ binds more strongly to wbc and  
rth (ΔEsolb  = −70 kJ mol−1 and +13 kJ mol−1) compared with K+ 
(ΔEsolb  = −50 kJ mol−1 and +63 kJ mol−1), suggesting that Na+ ions stabilize 
building units of UFI better than K+. These binding energies explain the 
high Na+/Si and low K+/Si in DiffSyn-generated routes.

We experimentally test the DiffSyn-generated routes for UFI, result-
ing in four successful experimental syntheses of the UFI material (Fig. 5a, 
blue). Powder X-ray diffraction patterns for synthesized UFI samples 
closely match the simulated diffraction pattern (Fig. 5c), confirming 
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that the crystallized material has the UFI structure. The resultant crys-
tals had a measured Si/AlICP of 19.0, one of the highest recorded in UFI 
synthesis (see ‘Elemental analysis’ in Methods for details on Si/AlICP). 
This composition is important because higher Si/AlICP is associated 
with higher thermal stability under catalytic conditions51. In addition, 
the crystals show a house-of-cards morphology (Fig. 5d), making them 
highly promising catalysts for a diverse range of applications.

While the experimentally verified synthesis routes fall within the 
generated distributions, the model generated unusually low crystal-
lization temperatures with a major mode at 100–150 °C (Fig. 5e). The 
generated minor mode at 175 °C was chosen based on domain expertise 
because higher temperatures accelerate crystallization kinetics and 
higher temperatures (>170 °C) avoid the formation of the undesired LTA 
competing phase. The higher temperature allowed us to use a relatively 
shorter crystallization time of 7 days (168 hours). These considerations 
underscore a powerful synergy between model and human expertise to 
achieve the desired synthesis outcome. Nonetheless, DiffSyn generated 
nine out of ten synthesis parameters as the major mode. The successful 
synthesis of UFI, enabled by, DiffSyn is a testament to DiffSyn learning 
the intricacies of zeolite synthesis without explicit chemical encodings 
and highlights its ability to recommend suitable synthesis parameters 
for unseen materials systems.

Discussion
Zeolite synthesis is a complex task with a high-dimensional space 
where synthesis parameters interact. This complexity underscores 
the need for generative models that capture the intricacies of materi-
als synthesis and circumvent expensive first-principles approaches. 
By capturing the one-to-many and multi-modal nature of structure–
synthesis relationships, DiffSyn outperforms previous methods for 
zeolite synthesis prediction.

DiffSyn requires the OSDA to be known a priori. Including the 
OSDA as an input ensures that the model captures the influence of 
the organic template. Recent work on OSDA design has enabled the 
selection of suitable OSDA inputs into DiffSyn29,30,52. The combination 
of OSDA design tools and DiffSyn could enable an end-to-end predic-
tive workflow for zeolite synthesis. While our work focuses solely on 
continuous variables, the synthesis outcome can also be influenced by 
categorical/discrete variables, such as the precursor choice9,53,54 and 
presence of seed crystals. These discrete variables present a compelling 
opportunity for future work in ML for synthesis modeling—for example, 
discrete diffusion55, autoregressive models56–59 and reinforcement 
learning60,61 for sampling discrete synthesis parameters.

For diffusion models, the inference speed is slower than for other 
generative approaches owing to sequential denoising. However, as 
the bottleneck of materials synthesis is experimental synthesis (for 
example, reaction time of weeks), inference speed is not a significant 
problem. Even if sampling speed becomes a bottleneck, techniques 
such as denoising diffusion implicit model sampling62 can trade off 
sampling quality for faster sampling. Flow-matching models63 could 
be an alternative to balance quality and speed. Notably, training Diff-
Syn requires optimizing hyperparameters for classifier-free guidance 
such as puncond and w as shown in Supplementary Fig. 6, which may be 
challenging if compute is limited.

The successful synthesis of UFI enabled by DiffSyn exemplifies 
the potential of our approach to guide experimental zeolite synthesis. 
However, a comprehensive validation of DiffSyn would ideally also 
demonstrate that recipes substantially diverging from the generated 
ones fail to yield the target phase; such an evaluation is beyond the 
scope of this study and is reserved for future work. We hypothesize 
that diffusion models could be applied to other materials systems, 
particularly when data are plentiful. This approach signifies a shift 
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from regression to generative models for materials synthesis, where the 
latter is needed to effectively model one-to-many structure–synthesis 
relationships. This work has enabled the prediction of probable and 
diverse synthesis pathways of microporous materials, signifying a step 
toward bridging computational materials design (‘what’ to synthesize) 
and synthesis planning (‘how’ to synthesize).

Methods
Zeolite and OSDA representations
Zeolite. We adopt two different approaches to encoding the zeolite 
structure. First, invariant features (for example, ring sizes, largest 
included sphere) are retrieved from the International Zeolite Associa-
tion (IZA) database64. These features serve as inputs into a multi-layer 
perceptron (MLP) encoder. Second, an EGNN65,66 encodes the zeolite 
as a graph (Supplementary Section D).

OSDA. We optimized each OSDA in the gas phase with the MMFF94 force 
field from RDKit-generated conformers67. Each OSDA is featurized using 
its physicochemical descriptors (for example, molecular volume and 
two-dimensional shape descriptors) averaged over all conformers28,29. 
The OSDA features are defined in Supplementary Table 3. The zeolite 
embedding is concatenated with the OSDA embedding and further 
encoded using the fusion encoder before the joint embedding guides 
the reverse diffusion process to generate synthesis routes (Fig. 1b). 
Model performance across the denoising diffusion trajectory can be 
found in Supplementary Fig. 7.

Denoising diffusion probabilistic models
Denoising diffusion probabilistic models68 are generative models that 
use a diffusion process to generate data by reversing a forward process 
that incrementally adds noise to the data. The forward process gradu-
ally corrupts the data x0 into a noisy sample xt by adding Gaussian noise 
in a Markov chain:

q(xt|xt−1) = 𝒩𝒩𝒩xt;√1 − βtxt−1,βtI) (2)

where q is the forward/noising distribution, βt is the variance at 
timestep t, and I is the identity matrix. It is often useful to sample xt 
directly from x0:

q(xt|x0) = 𝒩𝒩𝒩xt; √ᾱtx0, (1 − ᾱt)I) (3)

where αt = 1 − βt, ᾱt =∏t

s=1αs and s is the diffusion time step. The gene
rative process learns to reverse this corruption step by step (Fig. 1b), 
sampling from a distribution pθ(xt−1|xt)  parameterized by a neural 
network with parameters θ. This reverse process can also be repre-
sented as a Gaussian distribution

pθ(xt−1|xt) = 𝒩𝒩𝒩xt−1;μθ(xt, t),Σθ(xt, t)) (4)

Here, we learn the mean while fixing the variance as

μθ(xt, t) =
1

√αt

(xt −
βt

√1 − ᾱt

ϵθ(xt, t)), Σθ(xt, t) = βtI (5)

where ϵθ(xt, t) is a neural network trained to predict the noise ϵ. In this 
work, we use a U-Net32 (Fig. 1c). The training objective is to minimize a 
variational bound 𝔼𝔼t,x0 ,ϵ[∥ ϵ − ϵθ(xt, t) ∥

2] , which results in the 
diffusion model

pθ(x0) = ∫ p(xT)
T

∏
t=1

pθ(xt−1|xt)dx1∶T (6)

Chemically guided diffusion model
In standard guided diffusion models, a classifier is used to guide the 
generation process by adjusting the score to steer the model toward 

specific target classes. In contrast, classifier-free guidance22 eliminates 
the need for a separate classifier by conditioning the diffusion model 
directly on the desired attributes. During training, the score function 
̃sθ is trained both with and without conditioning c using a null token ∅. 

This training is done by randomly setting c to the unconditional null 
token ∅ with some probability puncond. Sampling is then performed  
using a linear combination of the conditional and unconditional score  
estimates:

̃sθ(xt, t, c) = (1 +w)sθ(xt, t, c) −wsθ(xt, t, ∅) (7)

where c refers to the chemical guidance from zeolite and OSDA embed-
dings shown in Fig. 1b, and w is the strength of the chemical guidance. 
Supplementary Section D contains the implementation details.

Model evaluation
Metrics. For each test zeolite–OSDA system, we sample 1,000 synthesis 
routes using the model and compute the following metrics with refer-
ence to unseen synthesis routes reported in literature. Wasserstein 
distance measures the distance between two probability distributions 
by finding the minimum cost to move probability mass from one dis-
tribution to another69. The Wasserstein metric captures differences 
in both the location and the shape of distributions (including spread 
and the presence of multiple modes). Although Kullback–Leibler diver-
gence may be used, the Wasserstein distance is chosen as it fulfills all 
requirements of a metric: non-negativity, identity of indiscernibles, 
symmetry and triangle inequality. Moreover, a significant drawback 
of Kullback–Leibler divergence is its behavior with distributions that 
do not have overlapping support. If there is any point where one distri-
bution has a zero probability and the other has a non-zero probability, 
the Kullback–Leibler divergence can become infinite or undefined.  
Wasserstein distance, in contrast, provides a meaningful and finite 
distance even for distributions with non-overlapping supports. Was-
serstein distance has been widely adopted in generative modeling 
(for example, Wasserstein GANs70 use a form of Wasserstein distance) 
because it provides a smooth, sensitive measure of distributional dif-
ferences. Small improvements in how well the model captures tails or 
secondary modes are reflected by a lower Wasserstein distance, guid-
ing us during model development to favor settings that capture the 
full distribution. In addition, inspired by ref. 71, we use two coverage 
metrics, COV-R (recall) and COV-P (precision), to measure the similar-
ity between sets of generated and literature-reported synthesis for 
each zeolite–OSDA system. Intuitively, COV-R measures the fraction 
of literature synthesis routes being correctly predicted, and COV-P 
measures the fraction of generated synthesis routes being probable. 
COV-F1 is computed as the harmonic mean of COV-R and COV-P. Refer 
to Supplementary Section C for a detailed justification of the metrics.

Baselines. A random dummy baseline corresponds to picking a ran-
dom point in synthesis space. Reference 16 proposed a deterministic 
regression-based approach using AMD for zeolite structural featuriza-
tion for a synthesis prediction task16. BNNs33 extend standard neural 
networks by incorporating Bayesian inference by treating network 
weights as probability distributions, enabling a distribution of out-
puts. We implement a classical generative approach, GMM34,72, which 
models data probabilistically as a sum of Gaussians (each with its mean 
and covariance). We also implement deep generative baselines: con-
ditional VAE11,19,73, conditional GAN35 and conditional NF. For NF, we 
use real-valued non-volume preserving (RealNVP) transformations36.

Experimental methods
Synthesis of UFI. We used colloidal silica (Ludox AS-40, 40 wt%, 
Aldrich), aluminum hydroxide (Al(OH)3, SPI Pharmacy), sodium hydro
xide (NaOH, 50%, Aldrich), with K222 (98%, Ambeed) and tetrameth-
ylammonium hydroxide pentahydrate (TMAOH⋅5H2O, 97%, Aldrich) 
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as OSDAs to synthesize UFI. The OSDAs were selected by the method 
described in ref. 48. The synthesis mixture had the molar composition 
1.0 SiO2, 0.033 Al2O3, 0.1 Na2O, 15 H2O, 0.15 K222, 0.025 TMA2O. We 
dissolved 0.021 g Al(OH)3 in a solution containing 0.64 g NaOH, 6.9 g 
deionized water and 0.36 g TMAOH⋅5H2O. After the solution became 
clear, 6 g Ludox AS-40 and 2.31 g Kryptofix 222 were added. Also, 4 wt% 
H-UFI seed material was included. The mixture was stirred and aged 
at room temperature for 24 h, then transferred to Teflon-lined 23-ml 
autoclaves and heated at 175 °C under dynamic conditions for 7 days. 
The resulting zeolites were recovered by centrifugation (12,000 rpm, 
10 min), washed with deionized water 3 times and dried overnight at 
110 °C. Samples were then heated at a ramp rate of 1 °C min−1 to 580 °C in 
flowing dry air (100 ml g−1 of zeolite) for 6 h to remove OSDA molecules.

X-ray diffraction. Zeolite crystal structures were analyzed using pow-
der X-ray diffraction with a Bruker D8 diffractometer (Cu Kα radiation, 
λ = 1.5418 Å, 40 kV, 40 mA). Diffraction patterns were recorded over a 
2θ range of 5–45°, with an angular step size of 0.02° and a scanning rate 
of 4° min−1 to confirm phase purity.

Scanning electron microscopy. The morphology of the calcined 
zeolite crystals was observed using a Zeiss Merlin High-Resolution 
scanning electron microscope. Zeolite samples were prepared as fine 
powders and mounted on carbon tape. Images were collected at 2.0 kV, 
100 pA and a working distance of 6.7 mm using the HE-SE2 detector in 
High-Resolution Column mode.

Elemental analysis. The elemental composition of silicon and alu-
minum (Si/AlICP) of synthesized UFI zeolites was determined using 
inductively coupled plasma atomic emission spectroscopy (Agilent 
5100). Si/AlICP is an important property of zeolites as a high Si/AlICP is 
correlated with high thermal stability51. Samples (10 mg) were digested 
in 100 μl hydrofluoric acid (48 wt%, Sigma-Aldrich) for 24 h, followed by 
dilution to 10 g with 2 wt% aqueous nitric acid (GFS Chemicals). Calibra-
tion curves were constructed with 6-point standards using ICP solutions 
of 1,000 ppm Si, Al and Na in 2 wt% HNO3 (Sigma-Aldrich, TraceCERT).

DFT methods
DFT calculations were conducted using the ORCA package (v5.0.4)74,75. 
For all calculations, the ωB97X-D hybrid functional76,77 was used along 
with the def2 triple-ζ basis set with polarization (def2-TZVP)78. During 
electronic optimization, wavefunctions were converged when energy 
changes were less than 10−8 Ha. Geometry optimizations were per-
formed until the energy varied by less than 5 × 10−6 Ha and the forces on 
all atoms were below 3 × 10−4 Ha bohr−1, adhering to the default ORCA 
optimization protocol. Where indicated, the SMD solvation model was 
applied to estimate solvation effects on the energies of each structure, 
using water as the solvent with a dielectric constant (ϵ) of 80.4 (ref. 79).

Binding energies were calculated relative to an isolated ion in 
vacuum and an empty Al-substituted composite building units (CBUs):

ΔEb = E[M ⋅ CBU] − E[Mn+] − E[CBUn−] (8)

where E[M · CBU] represents the energy of the metal ion positioned 
within the Al-substituted CBU, E[Mn+] is the energy of the isolated ion, 
and E[CBUn−] is the energy of the empty Al-substituted CBU containing 
n Al atoms. When CBUs offered multiple potential single Al positions or 
several configurations of two Al atoms, we selected the ΔEb correspond-
ing to the most stable Al arrangement, as this stability likely reflects 
the thermodynamically preferred configuration. Given adequate syn-
thesis time, Al atoms tend to occupy stable framework positions, as 
demonstrated in recent CHA studies80. Atoms within CBUs, including 
terminal hydroxyl groups, were kept fixed during calculations. Energies 
for empty, Al-substituted CBUs and isolated ions (in vacuum or with 
implicit solvation) were determined via single-point calculations in 
ORCA with appropriate charges.

The optimization of the metal-docked ion within the CBU allowed 
movement of the ion but maintained fixed positions for the CBU atoms, 
replicating the constraints imposed by a crystal environment where 
surrounding framework atoms would restrict movement; uncon-
strained optimization could lead to significant atomic displacements 
in these molecular forms. This study aims to understand how these ions 
influence specific CBU structures, given that the OSDA likely directs 
lta cage formation in these zeolites. Thus, CBU atoms were fixed to 
preserve a shape close to their zeolite-based structures, and binding 
energies were calculated with and without solvation effects from water.

Zeolite crystal structures for materials synthesized in this work 
were obtained from the IZA database64. Molecular models of individual 
CBUs for each synthesized framework were extracted by isolating 
them from their crystalline counterparts, with frameworks and corre-
sponding CBUs. CBUs were derived from selected zeolite frameworks, 
as listed in the IZA database. Terminal SiOH groups were added to 
undercoordinated Si atoms to maintain tetrahedral coordination. 
These SiOH groups were oriented with Si–O–H bond angles of 180° to 
minimize hydrogen-bonding interactions between nearby SiOH groups 
(Supplementary Fig. 19).

Data availability
The ZeoSyn dataset is available on figshare via https://doi.org/10.6084/
m9.figshare.30632942 (ref. 81). Source data is available with this paper.

Code availability
The code for preprocessing the ZeoSyn dataset, training and evaluat-
ing the diffusion models is available at https://github.com/eltonpan/
zeosyn_gen and on Zenodo82.
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